

 School Of Engineering

REMOTE AD HOC SENSOR NETWORKS

Li-Wen Yip

Bachelor of Engineering
in

Computer Systems Engineering

Thesis

October 2004

JAMES COOK UNIVERSITY

SCHOOL OF ENGINEERING

EG4010

Computer Systems Engineering

REMOTE AD HOC SENSOR NETWORKS

Li-Wen Yip

Thesis submitted to the School of Engineering in partial fulfilment of the

requirements for the degree of

Bachelor of Engineering with Honours

(Computer Systems)

11 November 2005

Preface Remote Ad Hoc Sensor Networks

ABSTRACT
Australia’s vast geographical expanses present challenging communications problems

for data collection, which often require the use of high power radio links. Many of

these scenarios lend themselves to the use of multi-hop ad hoc sensor networks, which

can provide an alternative, more flexible and economical solution. However, little if

any research has been conducted into developing network protocols suitable for these

scenarios, which are characterised by remote and inaccessible locations, sparse

topologies, and link ranges of up to 10 kilometres.

The first goal of this project was to develop a dynamic address allocation algorithm to

realise the goal of zero configuration, with minimal energy overhead. The second goal

was to develop an energy efficient media access control protocol, to maximise the

battery life of each node.

The MAC protocol features a synchronised wakeup, which suits the periodic bulk data

transfer typical of data logging applications. During inactive periods, a preamble

sampling technique provides dramatic power savings whilst maintaining minimal

network connectivity. The sampling frequency is dynamically optimised for

maximum power savings, based on anticipated variations in local traffic levels.

The address allocation protocol is based on an existing technique, in which each node

possesses a block of addresses. These addresses may be autonomously allocated to

other nodes without distributed agreement, which results in a protocol with extremely

low control overhead and minimal power consumption. This technique has been

optimised to further reduce the control overhead for each operation, and avoid

unnecessarily flooding the network with search requests.

A microcontroller based hardware platform was constructed, and was used to develop,

implement and test the aforementioned protocols. The MAC protocol has been

implemented and tested on the microcontroller, whilst the addressing protocol has

been implemented in the ns-2 wireless network simulator. The design of the hardware

platform has also been improved, improving energy efficiency and performance.

Li-Wen Yip School of Engineering, James Cook University i

Preface Remote Ad Hoc Sensor Networks

ACKNOWLEDGEMENTS
I would like to express my sincere thanks to Mr John Wicking. Without his invaluable

advice and direction, this thesis project would not have been possible. I would also

like to thank the ECE technical staff, whose immeasurable knowledge, experience,

and common sense have saved me from many headaches.

To my friends, for sharing in the insane antics which have helped me maintain my

humanity and sense of humour throughout this year, and for reminding me that there

is more to life than thesis.

Finally, to my family, for supporting and encouraging me through the greater part of

my life.

Li-Wen Yip School of Engineering, James Cook University ii

Preface Remote Ad Hoc Sensor Networks

STATEMENT OF ACCESS
I, the undersigned, the author of this Thesis, understand that James Cook University

will make the Thesis available for use within the University Library, by microfilm, or

other means, and to allow access to users in other approved libraries.

All users consulting this Thesis will have to sign the following statement:

“In consulting this Thesis, I agree not to copy or closely paraphrase it in

whole or in part without the written consent of the author; and to make proper

public written acknowledgement for any assistance, which I have obtained

from it.”

Beyond this, I do not wish to place any restriction on access to this Thesis.

Li-Wen Yip Date

Li-Wen Yip School of Engineering, James Cook University iii

Preface Remote Ad Hoc Sensor Networks

SOURCE DECLARATION
I declare that this Thesis is my own work and has not been submitted in any for

another Degree or Diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references given.

Li-Wen Yip Date

Li-Wen Yip School of Engineering, James Cook University iv

Preface Remote Ad Hoc Sensor Networks

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Previous Work... 2

1.3 Proposed Work.. 3

CHAPTER 2 RESEARCH.. 4

2.1 Power Conservation Techniques ... 4

2.1.1 On-Demand Wakeup .. 5

2.1.2 Scheduled Rendezvous ... 5

2.1.3 Asynchronous Wakeup ... 7

2.1.4 Sleep Based Routing Extensions .. 9

2.1.5 Preamble Sampling ... 11

2.1.6 Discussion ... 13

2.1.7 Conclusions... 14

2.2 Dynamic Address Assignment Protocols .. 16

2.2.1 Introduction... 16

2.2.2 Decentralised Protocols .. 20

2.2.3 Leader-based Protocols... 23

2.2.4 Hybrid Protocols ... 25

2.2.5 Discussion ... 27

2.2.6 Conclusions... 28

CHAPTER 3 DEVELOPMENT.. 29

3.1 Hardware Architecture .. 29

3.1.1 VGA Bypass Problem... 30

3.1.2 New Hardware Requirements ... 32

3.2 Software Architecture .. 33

3.2.1 The OSI Model ... 33

3.2.2 Relocatable Code .. 36

Li-Wen Yip School of Engineering, James Cook University v

Preface Remote Ad Hoc Sensor Networks

3.3 Manchester Encoding and Decoding... 38

3.3.1 Introduction... 38

3.3.2 Manchester Encoding.. 39

3.3.3 Manchester Decoding and Synchronisation.. 41

3.3.4 Software Buffers ... 48

3.4 Media Access Control ... 50

3.4.1 Preamble Sampling ... 50

3.4.2 Schedule Synchronisation... 56

3.4.3 Media Contention and Collision Management ... 58

3.5 Address Allocation .. 60

3.5.1 Network Setup .. 61

3.5.2 Node Join .. 61

3.5.3 Local Allocation.. 63

3.5.4 Global Address Search.. 64

CHAPTER 4 IMPLEMENTATION AND TESTING 66

4.1 Hardware Platform... 66

4.1.1 Node PCB Design and Construction... 66

4.1.2 ADG918 / ADG919 Wideband CMOS Switch .. 69

4.2 Manchester Encoding and Decoding... 73

4.2.1 Manchester Encoding.. 73

4.2.2 Manchester Decoding ... 77

4.2.3 Software Buffers ... 79

4.3 Media Access Control ... 80

4.3.1 Clear Channel Assessment.. 80

4.3.2 Preamble Sampling ... 81

4.3.3 Scheduled Reconfiguration... 83

4.3.4 Dynamic Reconfiguration... 83

4.4 Address Allocation Protocol... 85

4.4.1 Simulation ... 85

4.4.2 NS-2 Simulation Environment.. 86

Li-Wen Yip School of Engineering, James Cook University vi

Preface Remote Ad Hoc Sensor Networks

4.4.3 Design ... 87

4.4.4 Implementation ... 89

CHAPTER 5 DISCUSSION OF RESULTS... 90

5.1.1 Hardware Architecture.. 90

5.1.2 Manchester Encoding and Decoding .. 90

5.1.3 MAC Protocol ... 91

5.1.4 Address Allocation Protocol ... 92

CHAPTER 6 CONCLUSION .. 93

CHAPTER 7 CONTINUATIONS AND EXTENSIONS 95

7.1 Software Simulation.. 95

7.2 Location Discovery.. 96

REFERENCES.. 97

APPENDIX A SOFTWARE FLOW CHARTS... 101

A.1 Encoding and Decoding.. 101

A.2 Address Allocation .. 106

APPENDIX B SCHEMATIC DIAGRAMS.. 115

APPENDIX C RAW DATA ... 117

APPENDIX D NS-2 SIMULATION SOFTWARE 118

APPENDIX E MICROCONTROLLER SOFTWARE LISTING 126

E.1 Header Files... 126

E.2 Modules.. 134

E.3 Peripherals... 160

Li-Wen Yip School of Engineering, James Cook University vii

Preface Remote Ad Hoc Sensor Networks

LIST OF FIGURES

Figure 2.1 - IEEE 802.11 IBSS Power Save Mode [8]..6

Figure 2.2 - Sleep/Wake Cycles [9]...7

Figure 2.3 - Beacons in the absence of slot boundary alignment [5].............................8

Figure 2.4 - A SPAN network with 100 nodes and 19 coordinators [10]......................9

Figure 2.5 - Preamble Sampling ..11

Figure 3.1 - 2004 Hardware Block Diagram ...29

Figure 3.2 - Emitter Follower Voltage Sources ...32

Figure 3.3 - The 7 Layers of the OSI Model [36]..33

Figure 3.4 - Generating Executable Code from Object Modules [37].........................37

Figure 3.5 – Manchester Encoding ..39

Figure 3.6 - Manchester Clock Drift..40

Figure 3.7 - No Clock Drift..40

Figure 3.8 – RxD with no signal present; 5V/div; 1ms/div ...42

Figure 3.9 - Repeated framing errors...42

Figure 3.10 - Synchronous logic decoding process ...43

Figure 3.11 - Edge capture / sampling timing diagram ...44

Figure 3.12 - Clock Detection Timing Diagram..45

Figure 3.13 - Start of Frame Detection ..46

Figure 3.14 - Popcorn Buffering..48

Figure 3.15 - Buffer Data Structure ...49

Figure 3.16 - Buffer Data Structure Memory Map ..49

Figure 3.17 - Power Saving vs. Sleep Interval...54

Figure 3.18 - Carrier Detect (Active Low), No signal present, 5V/div, 1ms/div59

Figure 3.19 - Address Request...62

Figure 3.20 - Address Offers ...62

Figure 3.21 - Offer Accepted ...62

Figure 3.22 - Idle..62

Figure 3.23 - ASRCH message contains a routing information65

Figure 4.1 - Ad hoc radio node PCB; Revision 3 as constructed68

Figure 4.2 - ADG918/ADG919 Carrier Board ..71

Figure 4.3 - Carrier board soldered directly to PCB; Coaxial cable soldered directly to
carrier board ...71

Figure 4.4 - Signal strength in ON state (-75dBm)..72

Li-Wen Yip School of Engineering, James Cook University viii

Preface Remote Ad Hoc Sensor Networks

Figure 4.5 - Signal strength in OFF state (-110dBm) ..72

Figure 4.6 - Clock Detect Flag vs. Frequency ...77

Figure 4.7 - Message successfully received (The answer is 42!)79

Figure 4.8 - Power Consumption vs. Duty Cycle for X2010 Transceiver...................81

Figure A.1 – Frame Encoder..101

Figure A.2 - Manchester Encoder..102

Figure A.3 - Frame Decoder ..103

Figure A.4 - Manchester Decoder..104

Figure A.5 - High Priority Interrupt Service Routine ..105

Figure A.6 - Node Startup Event ...106

Figure A.7 - Initialisation Timeout Event..107

Figure A.8 - AREP Message Received Event ...108

Figure A.9 - NREP Message Received Event ...109

Figure A.10 - AREQ Message Received Event...110

Figure A.11 - Allocation Timeout Event ...111

Figure A.12 - AACK Message Received Event ..112

Figure A.13 - ASRCH Message Received Event ..113

Figure A.14 - AREJ Message Received Event ..114

Figure B.1 - Node Rev 3 Schematic Diagram ...116

Li-Wen Yip School of Engineering, James Cook University ix

Preface Remote Ad Hoc Sensor Networks

LIST OF TABLES

Table 3.1 - Classification of traffic rates ...53

Table 3.2 - Hardware Parameters...53

Table 4.1 - Instruction Cycles for Encoding Operations ...75

Table 4.2 - Frequency and Duty cycle measurements ...75

Table 4.3 - Byte Waveforms..76

Table 4.4 - Instruction Cycles for Decoding Operations ...78

Table 4.5 - Definition of Packet...87

Table 4.6 - Definition of Node...87

Table C.1 - X2010 Transceiver Power Consumption vs Duty Cycle117

Table D.1 - DAA.H..118

Table D.1 - DAA.CC ...120

Table E.1 - MACROLIB.INC..127

Table E.2 - PINCONNECTIONS.INC ..127

Table E.3 - SWSTACK.INC..130

Table E.4 - BUFFERS.INC ...131

Table E.5 - MAIN.ASM ..134

Table E.6 - PHY.INC...137

Table E.7 - PHY.ASM...137

Table E.8 - MAC.INC..145

Table E.9 - MAC.INC..145

Table E.10 - SPI.ASM ...160

Table E.11 - RTC.INC ...162

Table E.12 - RTC.ASM ...162

Table E.13 - ROUTECACHE.ASM ..167

Table E.14 - SWTIMERS.ASM ..174

Li-Wen Yip School of Engineering, James Cook University x

Chapter 1: Introduction Remote Ad Hoc Sensor Networks

Chapter 1

INTRODUCTION

1.1 BACKGROUND

Ad hoc networking is currently a very active area of research at many institutions

around the world. A subclass of ad hoc networks are ad hoc sensor networks, which

are typically characterised by long battery life, low traffic rates, low power radios, and

dense, well connected topologies. The sensor nodes integrate data collection, data

processing and communications functions into a tiny package with long battery life.

There are several existing projects which are at an advanced level of development,

including Berkley University Smart Dust, Crossbow Motes, and the TinyOS operating

system. There have also been numerous publications presenting new protocols and

techniques for media access control, power management, routing, and address

allocation. However, little or no research has been specifically conducted into ad hoc

sensor networks which feature sparse, minimally connected topologies, and a large

geographical distance between nodes. The target application is an ad hoc radio

network for environmental monitoring stations on the Great Barrier Reef, which will

allow data to be collected and relayed back to the Australian Institute of Marine

Sciences at Cape Cleveland. This data is currently collected by high power / long

range radio links, which requires expensive and bulky batteries and radios, as well as

a costly radio license.

The sparse topology, remote location, and typically harsh environmental conditions

present a new set of challenges, including vulnerability to the elements, varying link

quality, multi-path propagation, poor SNR and interference, propagation delays, and

low maintenance requirements. This scenario requires a different set of techniques

and protocols to achieve the desired goals of minimal power consumption, zero

configuration and planning, dynamic reconfiguration, and reliable connectivity.

Li-Wen Yip School of Engineering, James Cook University 1

Chapter 1: Introduction Remote Ad Hoc Sensor Networks

1.2 PREVIOUS WORK

This thesis project was started in 2003 by Nigel Sim [1], who researched a very broad

range of topics related to ad hoc networking. The primary focus of this work was

developing a simulation environment written in Python. Several basic protocols were

developed, implemented, and tested in this simulation environment, operating atop

both a microprocessor based physical layer and a software simulated physical layer.

Steven Sloots [2] continued this work in 2004, focussing his efforts on developing an

energy efficient routing protocol. A dynamic source routing (DSR) based protocol

was developed, and modified to distribute routing information over the entire route to

reduce the size of the network header and associated energy overhead. A power aware

routing optimisation (PARO) was implemented, which dynamically modifies routes

and transmission powers to minimise the energy cost of each route. The hardware,

physical, and data link layers were also redesigned based on recommendations made

by Sim.

Li-Wen Yip School of Engineering, James Cook University 2

Chapter 1: Introduction Remote Ad Hoc Sensor Networks

1.3 PROPOSED WORK

The goal of this ongoing project is to develop a complete system which can be

deployed on the Great Barrier Reef. With this in mind, several areas of work were

identified which were required to move closer to this goal:

1. Development and implementation of a media access control protocol

which conserves energy by placing the nodes’ radio transceivers in ‘sleep’

mode.

2. Development and implementation of a dynamic address allocation

protocol, with primary goals of zero configuration and minimal power

consumption.

3. Improvement of existing hardware and software where opportunities exist

to improve efficiency, power consumption, or performance.

Li-Wen Yip School of Engineering, James Cook University 3

Chapter 2: Research Remote Ad Hoc Sensor Networks

Chapter 2

RESEARCH

2.1 POWER CONSERVATION TECHNIQUES

A primary concern in this project is to minimise the power consumption of each node,

so as to obtain the longest possible battery life, reducing maintenance requirements.

Steven Sloots [2] addressed this problem at the network layer by developing a power

aware routing protocol, which dynamically adjusts routes and transmission powers to

minimise the total energy cost of each route.

Research has shown that the energy required to monitor the medium for activity is

only slightly less than that required for active communications [3]. This is supported

by the specifications for the X2010 transceiver currently employed in this project: The

nominal supply current is 7 mA in receive mode, 8 mA in transmit mode, and merely

1 μA in sleep mode [4]. Network traffic in ad hoc sensor networks is typically very

low, thus significant power savings can be made by placing the nodes’ radios in sleep

mode. This technique is typically implemented as a media access control protocol or

routing extension which operates the nodes’ radios on a low duty cycle, to minimise

the amount of energy wasted monitoring the channel for activity. The role of such a

protocol is to determine which nodes place their radios into sleep mode, and when [5].

Power conservation in ad hoc networks is currently a very active area of research, and

as such there are a plethora of existing protocols. As it would be impossible to

research every existing protocol, the remainder of this section will discuss various

techniques, and some of their more prominent protocol implementations.

Li-Wen Yip School of Engineering, James Cook University 4

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.1 On-Demand Wakeup

In on-demand wakeup, nodes may sleep until they are woken up by another node

which wishes to communicate with it. This is typically facilitated by a secondary

radio device, which can much more efficiently monitor its channel for activity due to

reduced complexity requirements. Systems used for the secondary radio include RFID

[6], and low power ISM band radios [7]. However, this introduces additional

hardware requirements, which add to the size and cost of each node. Of greater

concern is that the secondary radio must operate over the same range as the primary

radio [5]. This is a particular problem in a long range ad hoc network, where distances

between nodes are up to 10km. As such, this technique is not applicable to this

project.

2.1.2 Scheduled Rendezvous

A scheduled rendezvous protocol is one in which nodes’ sleep schedules are

synchronised, such that there is a communication window where all nodes are

monitoring the medium. One of the problems with this technique is that adjacent

nodes which have non-overlapping sleep schedules may never discover each other [5].

Another problem discussed in [5] is that this technique is not suitable for multi-hop ad

hoc networks, as distributed clock synchronisation is difficult to achieve. However,

this technique would be implemented at the link layer, thus clock synchronisation is

only necessary between adjacent nodes.

Li-Wen Yip School of Engineering, James Cook University 5

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.2.1 802.11b IBSS Power Saving Mode

In 802.11b IBSS Power Saving Mode [8], synchronisation is facilitated by having

nodes contend to transmit the synchronisation beacon with backoff. These beacons

signal the start of a window used exclusively for handshaking, known as an ad hoc

traffic indication message (ATIM) Window. Data packets are exchanged in the

intervals between the ATIM windows. During the ATIM window, nodes which wish

to communicate exchange ATIM messages and acknowledgements (Figure 2.1). Once

the window has elapsed, nodes which sent or received ATIM messages remain awake

to exchange packets, whilst all other nodes return to sleep.

Note that this protocol in its original form is not suited for multi-hop ad hoc networks,

as the synchronisation mechanism will not work unless all nodes in the network can

hear each other.

Figure 2.1 - IEEE 802.11 IBSS Power Save Mode [8]

Li-Wen Yip School of Engineering, James Cook University 6

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.3 Asynchronous Wakeup

An asynchronous wakeup protocol is one in which nodes’ wakeup schedules are not

synchronised, instead relying on the schedules of neighbouring nodes overlapping to

create a communication window for those two nodes.

2.1.3.1 Contiguous Wakeup Schedule

Feeney [9] has developed an asynchronous protocol where each sleep cycle has a

single contiguous “on” period, and a duty cycle of more than 50%. Therefore,

neighbouring nodes’ sleep schedules are guaranteed to overlap without requiring any

synchronisation.

Each wake interval is divided into two ATIM windows and one transfer interval, as

indicated in Figure 2.2. At least one of the ATIM windows is guaranteed to fall within

the wake interval of each neighbouring node. During the ATIM period, nodes which

wish to communicate exchange messages which allow them to estimate their phase

difference, and if necessary adjust their phase to increase the amount of overlap to

accommodate higher traffic. The ATIM windows are also used for broadcast and

multicast traffic, although a broadcast message must be transmitted in both ATIM

windows to guarantee that it will be received by all adjacent nodes.

The fundamental limitation of this approach as noted by the author is that each node

must be awake for at least fifty percent (50%) of the time.

Figure 2.2 - Sleep/Wake Cycles [9]

Li-Wen Yip School of Engineering, James Cook University 7

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.3.2 Arbitrary Wakeup Schedule

Zheng et al [5] have developed a protocol in which each node’s sleep cycle is divided

into a number of slots, each of which may be an “on” slot or a “off” slot. The authors

demonstrate that for a cycle of a particular slot length, there exists an optimal wakeup

schedule function which guarantees at least one slot overlap between any two nodes

regardless of phase difference, provided that the slot boundaries are aligned. The

authors go on to demonstrate that if the slot boundaries are not aligned, neighbours are

guaranteed to detect each other’s beacons transmitted at the start of each “on” slot

(Figure 2.3). These beacons include information that allows other nodes to calculate

the sender’s schedule relative to their own, and when their schedules overlap.

Outgoing packets are buffered, and transmitted when both sender and receiver are

awake.

This protocol overcomes the limitation of [9] that limits the duty cycle to at least 50%.

The authors give an example in which the wakeup schedule function has 73 slots, of

which only 9 are “on” slots – a duty cycle of 12.3%.

However, like [9], a single message cannot be guaranteed to reach all adjacent nodes.

The options for broadcasting would be to broadcast the message immediately after

each beacon, or to unicast the message to all known neighbours.

Figure 2.3 - Beacons in the absence of slot boundary alignment [5]

Li-Wen Yip School of Engineering, James Cook University 8

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.4 Sleep Based Routing Extensions

Several routing extensions have been developed based on the observation that there

are several possible routes for a given source and destination. These protocols operate

by allowing nodes which are redundant for routing purposes to conserve more power.

2.1.4.1 SPAN

In SPAN [10], “coordinator” nodes remain awake to buffer and relay packets for other

nodes, forming a low-latency backbone for the network. Other nodes are thus able to

operate in an asynchronous low power mode. Each node decides individually whether

to become a coordinator, based on how much energy it has available, and how much

energy will be saved by its neighbours. The role of coordinators is periodically

rotated, such that power savings are distributed equally to all nodes.

The salient features of SPAN include improved QoS due to the formation of a

backbone; however this is not important in an ad hoc sensor network. The authors also

note that this technique is only useful for a minimum node density; thus it is not

applicable to sparse or long range ad hoc sensor networks. This also applies to other

similar protocols based on the concept of a dominating set of nodes.

Figure 2.4 - A SPAN network with 100 nodes and 19 coordinators [10]

Li-Wen Yip School of Engineering, James Cook University 9

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.4.2 Basic Energy Conservation Algorithm (BECA)

In BECA [11], idle nodes asynchronously alternate between listening and sleeping

states. If a node either transmits or receives a packet, it transitions to an active state

for a predetermined timeout. Whilst a node is active it continuously monitors the

medium in anticipation of further network activity. The active timeout is set to be

slightly longer than the retry interval for network level requests (e.g. RREQ and

AREQ messages), so that involved nodes will remain active until the operation is

complete. The sleep interval is set to be an integer multiple k of the network level

retry interval, which guarantees that a sleeping node will be woken after k + 1 retries.

2.1.4.3 Adaptive Fidelity Energy Conservation Algorithm (AFECA)

AFECA [11] is an extension of BECA which uses information about the local node

density to dynamically modify sleep schedule duty cycles. The number of redundant

routes for a particular source and destination increases with the node density, thus the

duty cycle of nodes in a high density area can be decreased whilst maintaining a

constant amount of routing redundancy.

As with SPAN, this technique has limited usefulness in sparse networks.

Li-Wen Yip School of Engineering, James Cook University 10

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.5 Preamble Sampling

Figure 2.5 - Preamble Sampling

Preamble sampling (Figure 2.5) is an asynchronous technique which can be

considered as an on-demand wakeup mechanism, as it uses the packet preamble to

wake up sleeping nodes. Nodes periodically wake up to check for a wakeup signal

(i.e. preamble). If a wakeup signal is detected, the node remains awake to receive the

rest of the packet.

For a node to be woken up regardless of the phase of its wakeup schedule, the

preamble must be at least the same length as one sleep cycle [12-15]. Therefore, the

power savings made by the receiving node are partially offset by the energy required

to transmit and receive the longer preamble.

El-Hoiydi [13] models the performance of preamble sampling when used in

conjunction with Aloha [16] and CSMA [8] contention protocols, assuming fixed

node densities and packet lengths. However, these results are not very useful, as they

are more oriented towards optimising packet latency and throughput

Hill and Culler [15] demonstrate that by quickly measuring the energy in the channel

to detect the wakeup signal, the awake interval can be reduced to 50 μs, and the

wakeup signal is reduced to a long RF pulse. Conversely, if the start of frame

Li-Wen Yip School of Engineering, James Cook University 11

Chapter 2: Research Remote Ad Hoc Sensor Networks

sequence is used as a wakeup signal, the required awake interval is up to two packet

lengths, or 108 ms at 10 kbps.

WiseMAC [14], developed by El-Hoiydi and Decotignie is a preamble-sampling

based protocol designed for the downlink of infrastructure wireless sensor networks.

It is similar to the downlink of 802.11b BSS Power Saving Mode [8], in that the

access point learns the sampling schedules of each node and hence is able to minimize

the length of its packet preambles. This also has the advantage of minimizing

overhearing of packets by nodes which are not the intended recipients.

B-MAC [12], developed by Polastre et al. uses adaptive preamble sampling to reduce

the duty cycle for optimal power savings. However, reconfiguration is controlled by

protocols and services running at higher layers. For example, this allows network

layer information to be used in the decision to reconfigure, such as whether a reply is

expected to the packet just sent.

Li-Wen Yip School of Engineering, James Cook University 12

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.6 Discussion

To determine the best approach to take toward designing a media access control

protocol for this project, it is worthwhile to consider the typical deployment scenario

for this type of network.

The nodes will typically be very sparse, with minimal connectivity, although there

may be small clusters of nodes situated on reefs. The distance between adjacent nodes

may be up to 10km, thus RF amplification will be used for transmission, which will

make the energy cost of transmission significantly higher than that of receiving /

listening. The traffic rates will be very low, with most activity occurring as a result of

network layer operations (e.g. route discovery and address allocation) and data

retrieval. Data retrieval will comprise every sensor node routing logged data back to a

single sink node, which will occur at regular and predetermined intervals. Any MAC

layer protocol also has to work in conjunction with the DSR/PARO routing protocol

previously implemented by Sloots [2].

The last point is particularly important, as the PARO routing extension relies on nodes

being able to overhear packets not intended for them. Therefore, both asynchronous

protocols discussed [5, 9] would not be suitable, as they prevent overhearing of

messages by non-involved nodes. Additionally, neither protocol supports an efficient

broadcasting method. Due to the increased energy cost of transmissions, [9] is slightly

better in that it only requires beacons to be transmitted when there is an impending

packet transmission, however [5] requires periodic transmission of beacons.

The minimal connectivity of the network would mean that there would be very little

routing redundancy, severely limiting the usefulness of both routing extensions

discussed [10, 11]. Additionally, both would interfere with the PARO extension

previously implemented in this project [2].

This means that the power save protocol should be based on either scheduled

rendezvous, or preamble sampling. In fact, a combination of the two techniques may

be useful, as follows in the conclusion.

Li-Wen Yip School of Engineering, James Cook University 13

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.1.7 Conclusions

Recall that the majority of network traffic will be caused by either network level

operations or transfer of data from sensors nodes to the sink node. Since a reactive

routing protocol is used, route requests will only occur when there are impending data

packets. Therefore, the only network traffic which will not occur on a predictable

schedule is as a result of addressing operations, which mostly occur when the network

is initially deployed.

Consider an example, where data is collected from sensor nodes once every six hours,

and that data collection can be completed in one minute. Therefore, if a network-wide

rendezvous is scheduled for one minute every six hours, the duty cycle of the system

is reduced to approximately 0.28%, with no detrimental effects on packet latency or

throughput.

Synchronizing the clocks of adjacent nodes to within one second is a non-trivial

problem, and the propagation of synchronisation messages can be initiated by the sink

node. However, having such a long sleep interval makes it impossible for

asynchronous network operations to occur during this period, including address

allocation and the initial synchronisation of nodes.

A possible solution is instead of defining global “awake” and “sleep” periods, define

periods as “high traffic” and “low traffic” respectively. A preamble sampling

technique can be used during the low traffic periods. Communication during these

periods will be more energy expensive due to the increased preamble length; however

the network is able to retain minimal connectivity. By using adaptive techniques to

anticipate network activity similar to those used in [11, 12], the preamble energy

overhead during the power save interval could be significantly reduced for network

operations such as address requests.

For example, when an initialising node sends an address request, the network layer

may instruct the MAC layer to wait the duration of the retry interval before reverting

to power save mode, and instruct the MAC layer in neighbouring nodes not to use the

extended preamble.

Li-Wen Yip School of Engineering, James Cook University 14

Chapter 2: Research Remote Ad Hoc Sensor Networks

Moreover, the energy sampling technique used in [15] is equally applicable to the

X2010 transceiver currently employed in this project. The X2010 data sheet [4] shows

that the time from power up required to obtain a valid data is 5 ms, whereas the time

required to obtain a valid RSSI reading is only 1ms. These concepts will be further

developed in section 3.4 (p. 50).

Li-Wen Yip School of Engineering, James Cook University 15

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2 DYNAMIC ADDRESS ASSIGNMENT PROTOCOLS

2.2.1 Introduction

Automatic configuration is a desirable feature for any system, as it eliminates the need

for a skilled technician to assist with the deployment. One of the important functions

of automatic configuration is dynamic address assignment, also known as dynamic

address allocation, or simply dynamic addressing. Dynamic addressing refers to the

process by which nodes automatically obtain a routable address upon joining a

network. This is as opposed to static addressing, whereby a node is manually

configured with an address before it joins a network. Dynamic addressing has many

advantages over static addressing:

1. Automatic configuration – allows easy deployment.

2. Allows nodes to move freely between networks.

3. Allows addresses to be recycled if the corresponding nodes have left the

network.

4. It can cope with the dynamic nature of ad hoc networks.

In traditional TCP/IP networking, dynamic addressing is achieved exclusively with

the ubiquitous Dynamic Host Configuration Protocol (DHCP), however the lack of

static infrastructure in an ad-hoc network precludes its use. The following sections

shall go on to investigate existing research into developing dynamic addressing

protocols for ad hoc networks.

Li-Wen Yip School of Engineering, James Cook University 16

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.1.1 Ad Hoc Network Dynamics

Ad hoc networks are of a very dynamic nature, with constantly changing network

conditions, which the dynamic addressing protocol must have mechanisms to deal

with. The changes that may occur can be classified into five distinct network events:

1. Network creation – an unconfigured node creates a new network, in the

event that it cannot find any existing networks within communication

range.

2. Node join – An unconfigured node joins the network. The protocol must

ensure that a unique address is allocated to the node.

3. Node part – A node leaves the network. The protocol must ensure the

release of the node’s address to make it available for reallocation.

4. Network partition – The network is split into two parts either by a broken

link or crashed node. The protocol must ensure that each partition is still

able to continue operating as an independent network.

5. Network merge – Nodes from two independent networks come within

communication distance of each other. The protocol must detect and

eliminate duplicate addresses to allow the two networks to be merged.

Li-Wen Yip School of Engineering, James Cook University 17

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.1.2 Objectives

Sun and Belding Royer [17] list the following objectives for an ad hoc network

dynamic address assignment protocol:

1. Dynamic Address Configuration – Addresses are allocated without manual

or static configuration.

2. Unique Address Allocation – Each node is allocated a network-unique

address.

3. Robustness – The protocol should have mechanisms to deal with network

merges and partitions.

4. Scalability – The protocol should be applicable to networks of varying

sizes without an adverse impact on its performance. The relevant

performance metrics include timely address allocation, and minimal

control overhead during address allocation.

The intended application of this thesis project is the monitoring of remote and

inaccessible outdoor locations. Such a network would comprise sparsely distributed

nodes, with inter-node hops of up to several kilometres. A likely scenario is that the

nodes will be deployed in fixed locations, and network maintenance will consist of

replacing nodes whose batteries have expired.

Therefore, the primary goal is to minimise the need for network maintenance by

minimising the power consumption of the network. The largest consumer of energy in

an ad hoc network is radio communications [18], especially in sparse networks where

energy consumption is a function of the distance squared. Pottie and Kaiser [19]

illustrate this concept with an example, where transmitting 1 kilobyte of data a

distance of 100m uses the same amount of energy as performing 3 million instructions

in a 100MIPS/W processor.

There are two ways in which the addressing algorithm can reduce the power

consumption of the network:

Li-Wen Yip School of Engineering, James Cook University 18

Chapter 2: Research Remote Ad Hoc Sensor Networks

1. Minimise the control overhead of network operations. This may be

achieved by reducing the number of packets that must be transmitted to

complete a network operation.

2. Minimise the network addressing overhead. Network addresses are

transmitted in the network header of every packet transmitted, introducing

network overhead, and associated energy consumption. This overhead may

be significantly reduced by limiting the address space [20].

2.2.1.3 Classification of Address assignment protocols

The address assignment protocols developed to date may be divided into three

classifications according to their fundamental concept of operation:

1. Decentralised protocols, in which no one node has definitive knowledge of

all the addresses in use.

2. Leader based protocols, in which a single node keeps a definitive record of

every address in use.

3. Hybrid protocols, where every node possesses a subset of the total address

space, which it can allocate parts of to other nodes.

2.2.1.4 Terminology

Here are definitions of the terms to describe node operations and states in this work.

1. Requesting Node: The node which wishes to join a network

2. Attachment Agent / Initiator node: The node which is responsible for

requesting an address on behalf of the Requesting Node.

3. Address request (AREQ): the message broadcast to the network to enquire

if the candidate address is unique

4. Address reply (AREP): the message unicast back to the requesting node

informing whether the address is unique

Li-Wen Yip School of Engineering, James Cook University 19

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.2 Decentralised Protocols

In decentralised protocols, no one node has a definitive list of every address in use

throughout the network, so there must be a decentralised method of allocating unique

addresses.

Most decentralised protocols rely on some form of Duplicate Address Detection

(DAD). In the simplest form of DAD, the requesting node randomly selects a tentative

network address, and broadcasts an address request (AREQ) message to determine if

the address is already in use. Nodes which receive the AREQ may issue an address

reply (AREP) message to indicate that the address is already in use. Such an approach

is employed in IPv4 Link-Local Dynamic Address Allocation (ZeroConf) [21].

However, there are a number of problems with applying this approach to ad hoc

networks, which shall be discussed in the following sections.

2.2.2.1 Routing To Uninitialised Nodes

The ZeroConf protocol is only applicable to link-local networks, i.e. all the nodes in

the network are totally connected by physical or logical links, thus AREP messages

can be reliably delivered to the requesting node. However, in a multi-hop ad-hoc

network, if the tentative address is not unique, AREP messages may not be correctly

routed.

Perkins et al. [22] propose a scheme which attempts to reduce the probability of this

event. In addition to selecting a candidate address, requesting nodes select a

temporary source address from an address range reserved for this process, thus

guaranteeing that the source address will not be in use by any existing nodes.

However, there still exists the small possibility that two requesting nodes may

simultaneously select the same temporary source address, in which case AREP

messages may not be correctly routed [23, 24].

The protocols proposed in [20, 24] solve this problem by using an attachment agent to

perform the duplicate address detection on behalf of the requesting node. The

attachment agent is already has a unique address, thus the network can reliably route

AREP messages to it. The attachment agent and the requesting node can reliably

exchange messages, as they have share a direct link.

Li-Wen Yip School of Engineering, James Cook University 20

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.2.2 Limited Address Space

It can be observed that for simple DAD to perform efficiently, the ratio between the

size of the available address space and the size of the network must be quite large. In

[21, 22] the 169.254/16 address range (approx. 65,000 addresses) is reserved for this

purpose, giving a host joining a network comprising 1300 hosts a 98% chance of

selecting an unused address on its first attempt [21]. However, bandwidth is a very

limited resource in ad hoc sensor networks [25], thus it is desirable to conserve

bandwidth by reducing the address length and thus the addressing overhead.

In MANETconf [24], each node maintains a record of the addresses it knows to be in

use, allowing the attachment agent to select an address which has a high probability of

being unused. All nodes which receive the AREQ from the attachment agent, must

acknowledge it; this enables the attachment agent to release addresses which it does

not receive replies from, providing a mechanism to detect crashed nodes. Together,

these features make MANETconf applicable to networks with a limited address space.

In fact, it restricts usage to networks with a limited address space, as every node must

have sufficient memory to store the address of every node in the network.

Boleng [20] proposes a variable length addressing scheme in which the address space

grows with the size of the network. All nodes maintain two addressing parameters:

ADDR_LEN, the current address length in use, and HIGH_ADDR, the highest

address in use. This allows addresses to be allocated sequentially instead of randomly.

However, the maintenance of these parameters adds overhead to the network,

especially when the address space is incremented. Furthermore, the protocol does not

provide a mechanism to recover addresses from crashed nodes.

2.2.2.3 Unbounded Delays

Nesargi and Prakash [24] discuss the importance of selecting timeout periods for

DAD attempts. The timeout period is a compromise between timely address

allocation, and the chance of failing to detect duplicate addresses too far away from

the requesting node. The authors state that to ensure that all duplicate addresses are

detected, the timeout period must be a function of the diameter of the network, which

in the worst case can be O(n), where n is the number of nodes.

Li-Wen Yip School of Engineering, James Cook University 21

Chapter 2: Research Remote Ad Hoc Sensor Networks

Furthermore, Vaidya [26] presents the following theorem:

“Strong DAD cannot be guaranteed if message delays between at least one

pair of nodes in the network are unbounded.”

In a sparse outdoor ad hoc network, partitions due to weather conditions or node

failures may result unbounded message delays, thus causing DAD to fail. Considering

that such partitions are usually temporary, the resulting message delays could be

considered bounded, but the timeouts required to ensure success are impractically

long.

MANETconf addresses this issue by maintaining state information, i.e. each node has

a list of all the addresses it knows to be in use. If the initiator node receives

affirmative AREP messages from all the addresses in its list, it can be fairly certain

that the candidate address is not in use without waiting for the timeout to expire.

2.2.2.4 Control Overhead

As previously mentioned, bandwidth is a very limited resource in ad hoc sensor

networks [25]. Every DAD based protocol discussed so far have one common

disadvantage – each address allocation operation requires the network to be flooded

with an AREQ message, thus a non-trivial amount of bandwidth is consumed each

time a node joins. In particular, MANETconf [24] requires all nodes to unicast AREP

messages in reply to a AREQ message. The amount of bandwidth consumed is related

to the size of the network, thus the scalability of these approaches is generally poor.

This is an intrinsic disadvantage of distributed DAD based approaches, and there is

little that can be done to mitigate it without introducing some sort of centralisation.

Sun and Belding-Royer propose such a scheme which combines DAD and

centralisation [27], which shall be discussed in the following section.

Li-Wen Yip School of Engineering, James Cook University 22

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.3 Leader-based Protocols

Leader-based protocols employ a single node to maintain a definitive list of addresses

in use throughout the network. This node may perform two functions:

1. Verify the uniqueness of a node’s tentative address.

2. Directly allocate unique addresses to nodes.

The classic example of a leader-based protocol is the dynamic host configuration

protocol (DHCP) [28], a client-server based protocol for automatic configuration of

clients in TCP/IP networks. The protocol includes a dynamic address allocation

mechanism, in which the DHCP server allocates addresses to clients on a renewable

time-limited lease. If the client allows the lease to expire, the address will be made

available for allocation to other clients, allowing addresses to be reused without being

explicitly released by the client.

However, ad hoc networks are by definition devoid of static infrastructure, precluding

the use of DHCP in its traditional form. The leader-based protocols researched [27,

29] all elect a leader from amongst the nodes which form the network. These

protocols are discussed further in the following sections.

2.2.3.1 Dynamic Address Configuration Protocol (DACP)

Sun and Belding-Royer [27] propose a protocol based on [22] which combines DAD

and a centralised Address Authority (AA). (This protocol is referred to by the same

authors in [17] as DACP). The first and second nodes to join the network respectively

assume the roles of Primary Address Authority (PAA), and the redundant Backup

Address Authority (BAA).

The PAA periodically broadcasts a beacon message, advertising its presence to the

network. A node may detect a network partition if it stops receiving beacon messages

from the PAA, in which case a new PAA is elected for the partitioned network. If the

BAA is inside the partitioned network, it may automatically take over as the PAA.

Conversely, a node may detect a network merge if it receives beacon messages from

two different PAAs, in which case the two PAAs will exchange address lists and

eliminate and reallocate duplicate addresses.

Li-Wen Yip School of Engineering, James Cook University 23

Chapter 2: Research Remote Ad Hoc Sensor Networks

A requesting node selects a candidate address and a temporary sources address, and

performs DAD in an identical manner to that described in [22]. If a duplicate address

exists, either the node possessing the duplicated address or the PAA may reply with

an AREP message, which allows for faster detection of duplicate addresses. However,

there is no mechanism to speed up confirmation that the candidate address is unique.

Once the requesting node is satisfied that its candidate address is unique, it registers

its address and requested lease duration with the PAA. The lease mechanism is

identical to that used in DHCP [28], allowing an address to be released if the node

does not renew its lease, whilst allowing temporarily disconnected nodes to retain

their addresses.

The authors also argue that because routing information is accumulated by the AREQ

messages, the AREP message can be routed back to the correct recipient even if two

requesting nodes are concurrently using the same temporary source address. However,

they do not consider the case where the two requesting nodes share an identical route,

which has a reasonable probability in very small networks.

2.2.3.2 Optimised DACP (ODACP)

Sun and Belding-Royer propose in [17] an optimised version of their DACP protocol

sans DAD and the associated overhead, resulting in a pure leader-based scheme.

Instead of flooding the network with AREQ messages, the requesting node unicasts

the AREQ message to the PAA.

2.2.3.3 Dynamic Address Allocation Protocol (DAAP)

Patchipulusu [30] proposes a scheme in which the last node to join the network takes

on the responsibility of being the leader. Addresses are assigned sequentially, and all

nodes keep a record of the highest address in use (the address of the leader). All nodes

periodically broadcast “hello” messages containing a network identifier, which

facilitates the detection of network merges and partitions.

Li-Wen Yip School of Engineering, James Cook University 24

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.4 Hybrid Protocols

In a hybrid protocol, every node is a leader with the authority to allocate addresses

from a subset of the address space.

2.2.4.1 Nigel Sim’s Solution

Nigel Sim [1] proposes a scheme based on a binary tree, where each node has the

authority to assign two child addresses, which consist of a single bit appended to the

parent’s address. This concept has the advantage of variable address length. However,

this scheme does not consider the case where a requesting node is unable to establish

a direct link to a parent which has not already assigned both its child addresses, nor

does it consider the topology of the network. Consider the best case scenario, where

the topology of the network is a complete binary tree. The required address length

would be log2 n, i.e. there would be few wasted addresses. However, consider the

worst case scenario, where the network has a linear topology, which would require n

bit long addresses, i.e. there would be 2n – n wasted addresses. This scheme is clearly

only suitable for dense networks where the topology remains static for the lifetime of

the network. However, [23, 31] (which are discussed below) make use of this concept

of each node having authority over a subset of the address space resulting in low

maintenance addressing schemes with little overhead.

2.2.4.2 Address Pool Protocols

Both Tayal and Patnaik [23] and Hu and Li [31] have presented protocols based on

the address pool concept. Instead of a single address, each node is allocated a set of

addresses, the first address of which it uses for itself. Upon request, it will relinquish

part of its address pool to a requesting node. This operation does not require multi-hop

routing or distributed agreement, thus mitigating the disadvantages common to other

protocols such as flooding messages, non-trivial timeouts and delays, protocol

modifications, overhead of periodical maintenance messages, and major address leaks

[31]. Another major advantage is that partitioning and subsequent remerging of a

network need not incur any control overhead. The two hybrid protocols reviewed here

differ primarily in their solution to the address depletion problem, where a joining

node is not in range of an existing node which possesses an available address.

Li-Wen Yip School of Engineering, James Cook University 25

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.4.3 ZAL: Zero-Maintenance Address Allocation

ZAL [31] takes a proactive approach to the address depletion problem, using the ZAL

Distribution Equalization (ZAL/DE) algorithm. ZAL/DE promotes even distribution of

addresses throughout the network by attempting to ensure there are a predetermined

number of available addresses within transmission range of any node in the network.

Nodes which possess surplus addresses will attempt to distribute them to other nodes.

However, this process will only occur when absolutely necessary to maintain the

minimum number of available addresses in an area, thus there is no control overhead

in a stable network.

In the event that a requesting node cannot obtain an address from any of its immediate

neighbours, it randomly selects a temporary address from a reserved address range

until it can obtain a permanent unique address. However, this assumes the node is

mobile, and will eventually come into direct contact with a node which has an

available address. This obviously will not work for a sensor network in which all the

nodes are static. Furthermore, this solution does not provide a mechanism to reclaim

leaked addresses.

2.2.4.4 The Tayal and Patnaik solution

The solution proposed by Tayal and Patnaik [23] takes a reactive approach to the

address depletion problem. When a requesting node cannot contact a node that has

available addresses, the attachment agent floods the network with a request for an

available address pool. This process also provides a mechanism to reclaim leaked

addresses; any nodes which no not respond to the address request within a bounded

timeframe can have their address pools reclaimed. Any reclaimed address pools are

always repossessed by a node which contains an adjacent address block. This eases

the memory requirements on the nodes, as the address pools will always be a

contiguous block, which can be defined by its start and end addresses.

Li-Wen Yip School of Engineering, James Cook University 26

Chapter 2: Research Remote Ad Hoc Sensor Networks

2.2.5 Discussion

To determine the best approach to the address allocation problem for this project, it is

worthwhile to consider the most likely deployment situation for this type of network.

The network will most likely be deployed outdoors, with a distance between the nodes

of up to 10km. Most of the nodes will be deployed when the network is initially set

up, and additional nodes may be added or removed throughout the life of the network.

Nodes may crash as their batteries fail, or due to equipment failure. Weather

conditions may temporarily affect the link quality, potentially causing temporary

network partitions and subsequent remerges. Other devices operating in the same ISM

band may cause interference, which may interfere with the operation of one or more

nodes, potentially causing temporary network partitions.

A key point here is that most network partitions will be temporary. Whilst the network

partitions must be able to continue operating until they are remerged, it is a potential

waste of energy to establish new network infrastructure for each partition if they are

inevitably, going to be remerged. The hybrid protocol concept is very suitable in this

respect, as there is no control overhead for a network partition and subsequent

remerging.

The salient feature of the Tayal and Patnaik solution [23] is its simplicity, and that all

operations remain local unless address depletion occurs. The principle of contiguous

address spaces is very desirable, as it eases memory requirements, and reduces the

bandwidth required for nodes to exchange address spaces.

The other impressive feature of ZAL [31] is that it proactively ensures even

distribution of addresses throughout the network. The authors claim that the network

requires zero maintenance once it has reached a stable state, however reaching a

stable state comes with a non-trivial energy cost, particularly in a sparse network.

However, ZAL does have some passive features which promote even distribution of

addresses. For example, a requesting node does not accept the first address offer it

receives. Instead, it waits for all replies to arrive, then accepts the largest offer. This

increases the time it takes to obtain an address, but it does not make the operation any

more energy expensive.

Li-Wen Yip School of Engineering, James Cook University 27

Chapter 2: Research Remote Ad Hoc Sensor Networks

A potential area in which the Tayal and Patnaik protocol can be improved is the

method used to search the network for available addresses. The authors specify that if

a node receives an address request but does not possess any available addresses, it

immediately floods the network with an address search message. Therefore, even if

other nodes which received the address request are able to provide addresses to the

requesting node, this message will be flooded to the network. This method could be

improved to only propagate the search message when it is absolutely necessary,

thereby conserving energy.

2.2.6 Conclusions

It is clear that the address allocation protocol for this project should be based on the

hybrid protocols [23, 31], primarily because of their ability to deal with temporary

network partitions, and low control overhead. The protocol to be developed will

attempt to incorporate the salient features of both protocols, as well as adaptations to

conserve energy in a sparse long range network. The operation of this protocol is

discussed further in section 3.5 (p. 60).

Li-Wen Yip School of Engineering, James Cook University 28

Chapter 3: Development Remote Ad Hoc Sensor Networks

Chapter 3

DEVELOPMENT

3.1 HARDWARE ARCHITECTURE

The hardware platform previously designed by Sloots [2] worked successfully, and as

such will only be subject to minor improvements, the main goal of which will be

decreasing power consumption. A block diagram of the 2004 hardware platform is

shown below in Figure 3.1.

Figure 3.1 - 2004 Hardware Block Diagram

Li-Wen Yip School of Engineering, James Cook University 29

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.1.1 VGA Bypass Problem

As can be seen in Figure 3.1, an X2010 transceiver module is used in conjunction

with an AD8369 Variable gain amplifier (VGA) to provide programmable output

power, as required to implement the power aware routing extension developed in

2004. The transceiver only has one antenna connection; hence a relay provides a

return signal path around the VGA to allow reception. This was an improvised

solution, and as a result is far from ideal:

1. The relay contact closing time causes an additional delay when switching

between receive and transmit modes. This delay was found to be between

5 and 15 milliseconds [2], which exceeds the X2010 transceiver’s inherent

switching delay of 5 milliseconds.

2. The current required to reliably latch the relay contacts is typically

550mA, which the microprocessor must drive via a switching transistor

[2]. More importantly, this incurs a power consumption of 2.75W1, which

is clearly unacceptable in an application where power conservation is an

important criterion.

Several solutions to this problem were considered. One option was to retain the same

configuration, but use a low power relay. The lowest power relay available through

Farnell InOne is the NEC EF2 ultra low power relay [32], which has a power

consumption of 50mW, and an operation time of 4ms. However the device is

expensive, costing $14.51 (AUD) for a single unit.

A second option was to eliminate the bypass relay by using separate transmitter and

receiver modules, which allows for two separate antennae. However, this would

increase the size and cost of each node.

1 Power consumption is based on a power supply of 5 Volts DC.

Li-Wen Yip School of Engineering, James Cook University 30

Chapter 3: Development Remote Ad Hoc Sensor Networks

A third option was to use a transceiver module with programmable output power. The

LPRS ER400TRS “Easy Radio” transceiver module [33] features programmable

output power, frequency, and data rate, and handles low level functions such as

Manchester encoding and buffering. This would eliminate the bypass relay, the

AD8369 VGA, and the software Manchester encoder/decoder. Unfortunately, the

maximum output power for the device is only 10mW. To maximise communications

range, the nodes should be able to transmit at the maximum allowable power for

licence free transmission, which for the Australian 433 MHz band is 25 mW. If this

device were available with a higher transmission power, it would be the ideal solution.

The chosen solution was to replace the relay with a solid state CMOS switch, which is

far smaller and consumes an insignificant amount of power. General purpose CMOS

switches are unsuitable for switching high frequency signals due to impedance

problems. However, Analog Devices produces a range of wideband analogue switches

specially designed for RF applications (ADG918/919, [34]). These devices provide

low insertion loss in the ‘ON’ state and high port separation in the ‘OFF’ state at

frequencies up to 1 GHz, and have very low power consumption (~1uA).

Unfortunately, the devices only operate over 1.65V – 2.75V, and will hence require a

separate power supply.

A suitable power supply for a low current device is an emitter-follower voltage

source. Sources of this type would typically use a Zener diode to provide a reference

voltage (Figure 3.2a). However, to operate a Zener diode in its Zener region requires

approximately 10mA of current, which is not acceptable overhead for this application.

The alternative is to use a resistor voltage divider to provide the reference voltage

(Figure 3.2b). Achieving a precise ratio with discrete resistors is difficult at best, thus

a trimmer potentiometer will be used in the prototype allowing the voltage to be tuned

to the correct level.

Li-Wen Yip School of Engineering, James Cook University 31

Chapter 3: Development Remote Ad Hoc Sensor Networks

a) Zener diode as reference

b) Resistor voltage divider as reference

Figure 3.2 - Emitter Follower Voltage Sources

3.1.2 New Hardware Requirements

3.1.2.1 Real Time Clock

A real time clock is to be included in this hardware design for several reasons:

1. To enable accurate scheduling of data sampling.

2. To allow data samples to be time stamped.

3. To allow accurate timing of sleep-wakeup schedules.

The RTC device should feature programmable alarms that are capable of generating

hardware interrupts for the PIC microcontroller. A suitable device was found in the

Maxim-Dallas DS1305 Serial Real Time Clock [35], which features two

programmable alarms with separate interrupt lines, and a SPI interface.

Li-Wen Yip School of Engineering, James Cook University 32

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.2 SOFTWARE ARCHITECTURE

3.2.1 The OSI Model

The Open Systems Interconnect Model (OSI Model) divides the functions of a

communication system into 7 layers of abstraction. This model allows a

communication system to be designed as a ‘stack’ of protocols, each of which

implement the functionality of a layer.

Figure 3.3 - The 7 Layers of the OSI Model [36]

The key concept of the OSI Model is encapsulation, which defines the way in which

the layers interact with each other. Each layer is only dependent on the functionality

of the layer immediately below it, and only provides functionality to the layer

immediately above it.

The protocol layers in different devices communicate with each other using a

Protocol Data Unit (PDU), which comprises a header containing information specific

to that protocol layer, and a data section which encapsulates the PDU of the next

higher layer. The header is removed before the PDU is passed up to the next higher

layer, so a particular layer will only ever see its own PDU. This allows a

communications system to encompass many devices using different communications

protocols and transmission media.

Li-Wen Yip School of Engineering, James Cook University 33

Chapter 3: Development Remote Ad Hoc Sensor Networks

This thesis project is only concerned with developing a network access module, which

comprises the first three layers of the OSI Model. The descriptions of these layers

according to Wikipedia [36] are given below.

3.2.1.1 Physical Layer

The physical layer defines and implements the mechanical and electrical interface

 ary function is to convert the data as it is represented within

the device into a signal suitable for the communication medium, i.e. an electrical,

1. Transceiver hardware.

tter, and decoding and synchronisation at the

3.2.1.2 Data Link Layer

between devices. Its prim

light, or radio signal, and to convert it back at the receiver.

Important aspects of the physical layer for a radio based system include:

2. Transmission frequency.

3. Baud rate.

4. Encoding at the transmi

receiver.

5. Establishment and termination of transmissions.

The da mes between two devices

nt link. The data link layer is further divided into two sub-

layers: the Media Access Control (MAC) layer, and the Logical Link Control (LLC)

AC layer converts the raw bit stream received by the physical layer into frames,

includes:

3. , and verification of the CRC.

ta link layer ensures the reliable transmission of fra

which share a point-to-poi

layer.

3.2.1.2.1 Media Access Control Layer

The M

which are the data link layer PDU. This

1. Delimiting the frames at the transmitter, and extracting frames from the bit

stream at the receiver.

2. MAC Addresses, filtering frames not intended for the device.

Calculation, appending

Li-Wen Yip School of Engineering, James Cook University 34

Chapter 3: Development Remote Ad Hoc Sensor Networks

4. Controlling access to the media i.e. Carrier Sense Multiple Access

3.2.1.2

The LLC layer is responsible for converting between network layer packets and data

sembling them at the receiver. (Type 1, 2, 3)

3.

The LL

3.2.1.3 Network Layer

(CSMA).

.2 Logical Link Control Layer

link layer frames. This includes:

1. Fragmenting network layer packets which are too large into smaller MAC

layer frames, and reas

2. Ensuring reliable point-to-point delivery of frames. (Type 2, 3)

Reassembling frames in the correct order. (Type 2)

C layer is not implemented in this project.

message between any two nodes in

s:

 allocation.

 to MAC layer addresses.

The network layer is responsible for conveying a

the network. This include

1. Global network layer addressing.

2. Dynamic address

3. Resolving network layer addresses

4. Routing.

Li-Wen Yip School of Engineering, James Cook University 35

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.2.2 Relocatable Code

Assembly language programs for Microchip PIC microprocessors are traditionally

compiled as absolute code, meaning that the executable code is generated directly

from a single monolithic source file, and program and data memory addresses are

assigned at compile time.

The software developed by Steven Sloots was written in this manner, with the source

file containing over three 3000 lines of code, 120 cryptic variables, and 350 code

labels and constants. This made the code very difficult to understand and work with,

and was exacerbated by a lack of comprehensive commenting and documentation.

The introduction of MPASM v2.00 and MPLINK v1.00 [37] allows the generation of

relocatable code, meaning that several source files are compiled into individual object

modules. These object modules are then combined by a linker to generate executable

code (Figure 3.4). This has several advantages over absolute code generation:

1. The program can be split into several independent and reusable code

modules.

2. Each module has a separate namespace for program and data memory

labels.

3. Only the affected modules need to be recompiled when changes to the

program are made.

Li-Wen Yip School of Engineering, James Cook University 36

Chapter 3: Development Remote Ad Hoc Sensor Networks

Figure 3.4 - Generating Executable Code from Object Modules [37]

The software will be redeveloped for this project using relocatable code, with these

specific objectives:

1. Make the code modular, reusable, and easy to understand.

2. Limit the scope of each code module to a single protocol, so that each

protocol can be worked on independently.

3. Create a well defined interface for each code module, to promote

encapsulation and reusability.

4. Consistent standard of comprehensive commenting, especially for each

subroutine / code block (not just line-by-line comments).

5. Create comprehensive documentation in the form of module interaction

diagrams and flow charts.

6. Allow the code to be easily extended in future projects.

Li-Wen Yip School of Engineering, James Cook University 37

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3 MANCHESTER ENCODING AND DECODING

As stated earlier, the X2010 radio transceiver is AC coupled on its data pins, thus the

data must be Manchester encoded to ensure that there is no DC component in the

transmitted bit stream. This introduces the need for the following functions:

1. Manchester encoding.

2. Manchester decoding.

3. Clock synchronisation at the receiver.

3.3.1 Introduction

Most digital coding schemes involve multiplying (XOR) the data sequence with a

code sequence. In many schemes, the length of the code sequence is equal to the

length of one data bit, so that a high data bit is encoded a single iteration of the code

sequence, and a low data bit is encoded as an inverted iteration of the code sequence.

The encoded bits are referred to as chips. The effective data rate, or chip rate is given

by:

 Chip rate = Data rate * Code sequence length (3.1)

Manchester encoding uses the code ‘10’ thus a data bit 1 is encoded to 10, and a data

bit 0 is encoded to 01. The code is two bits long, so the chip rate will be twice the data

rate.

 An equally valid alternative definition is based on transitions, with a data bit 1 being

encoded to a rising edge, and a data bit 0 being encoded to a falling edge.

Li-Wen Yip School of Engineering, James Cook University 38

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3.2 Manchester Encoding

Figure 3.5 – Manchester Encoding

The hardware implementation of Manchester encoding is to multiply the raw data

stream with a 50% duty cycle clock running at the data rate (Figure 3.5), which Sloots

[2] successfully converted to a software implementation. This software is executed

under a compare interrupt running at the chip rate, allowing the output to be

manipulated once at the beginning of every chip period.

However, there is a minor flaw in this software - interrupt latency and the time taken

to calculate the new output value may vary, causing the encoded clock signal to drift

in phase (Figure 3.6).

No problems are anticipated unless the clock rate is increased relative to the processor

speed, however there is a simple solution: The value of each chip can be calculated

one chip period in advance, therefore as long as the calculations take less than one

chip period, the clock will remain in perfect synchronization. This is easily

implemented by programming a compare output pin to change at the instant the

interrupt occurs.

Li-Wen Yip School of Engineering, James Cook University 39

Chapter 3: Development Remote Ad Hoc Sensor Networks

Figure 3.6 - Manchester Clock Drift

Figure 3.7 - No Clock Drift

Li-Wen Yip School of Engineering, James Cook University 40

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3.3 Manchester Decoding and Synchronisation

Sloots [2] previously developed a software decoding algorithm based on

asynchronous serial transmission. Both the start and stop bits are high (1→0), so that

there is always a rising edge at the start of the byte. The decoder detects this edge via

external interrupt, waits 1/2 a chip time, then takes 20 samples, 1 chip time apart.

Framing errors are detected by verifying both the start and stop bits, and verifying that

the second chip of each bit is inverted. However, there are some major flaws with this

algorithm, as described below.

Firstly, the receive data pin of the X2010 transceiver does not have an mark state

when a signal is not present, rather it outputs a stream of randomly spaced pulses.

(Figure 3.8). The aforementioned decoding algorithm will detect one of these as a

start bit after a carrier is detected, but before the incoming signal stabilises, which will

likely cause a framing error. This means that there must be a mark state for at least

one byte period after the incoming signal has stabilised, to allow the receiver to

correctly detect the first start bit. However, there is no way to achieve this; when a DC

signal is fed into the transmitter, the receiver still outputs a stream of randomly spaced

pulses, albeit less frequently.

Secondly, because the samples are not processed until all 20 have been taken, the

decoder has no way of detecting a framing error until one byte period has elapsed.

This poses a problem with a Manchester encoded signal: during the synchronisation

header, the clock embedded in the signal may trigger another sampling routine as

soon as the previous one has finished, meaning the decoder may never synchronise to

the start of the frame (Figure 3.9).

Thirdly, the start and stop bits on each byte are currently serving to synchronise the

receiver to the start of each frame, which is essentially using an asynchronous

synchronisation technique to decode a synchronous transmission. Much more precise

synchronisation can be achieved by extracting the clock from the data signal, hence

these bits unnecessarily incur a 25% bandwidth overhead.

Li-Wen Yip School of Engineering, James Cook University 41

Chapter 3: Development Remote Ad Hoc Sensor Networks

Figure 3.8 – RxD with no signal present; 5V/div; 1ms/div

Figure 3.9 - Repeated framing errors

It is clear that the decoding algorithm must be improved so that synchronisation can

be achieved more quickly, reliably, and with less overhead. The problem of decoding

and synchronisation exists at two levels:

1. Clock synchronisation, i.e. synchronising to the start of each data bit. This

is the responsibility of the physical layer.

2. Synchronising to the start of each frame (packet). This is the responsibility

of the data link layer.

Li-Wen Yip School of Engineering, James Cook University 42

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3.3.1 Clock Synchronisation

Sim [1] discussed three methods of clock synchronisation for a Manchester encoded

data stream:

1. Over-sampling.

2. Edge Timing.

3. Synchronous logic, combining edge timing and sampling.

Sim [1] developed an over-sampling method, which takes 4 samples within each chip

period. Clock synchronisation is ensured by waiting for the edge in the middle of each

bit. However, the algorithm requires a high processor speed, which is not conducive

to reducing power consumption.

The edge timing method decodes the data bits by measuring the time between edges,

however it was discounted as it is overly complex.

Mr Sim also discussed a synchronous logic solution, which combines edge detection

and sampling. The process is shown in Figure 3.10:

Figure 3.10 - Synchronous logic decoding process

This solution was originally discounted as a possible solution, due to additional

external hardware requirements. However, it is in fact is a simplified version of Sim’s

over-sampling method [1], and is easily implemented in software using a

capture/compare module.

Li-Wen Yip School of Engineering, James Cook University 43

Chapter 3: Development Remote Ad Hoc Sensor Networks

Figure 3.11 - Edge capture / sampling timing diagram

As can be seen in Figure 3.11, even if the clock is initially incorrectly detected, it will

be correctly acquired as soon as the data bit changes from 1 to 0, or 0 to 1. This

supports the assertion that the preamble would have to consist of alternating data bits,

i.e. 0xAA or 0x55 [1].

A disadvantage of this method is that the second chip of each bit is not verified.

However, this should not pose a problem; the effect of any interference would be to

disrupt the clock rather than corrupt the data, and any data errors that do occur will be

detected by the frame’s CRC.

Li-Wen Yip School of Engineering, James Cook University 44

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3.3.2 Clock Detection

Figure 3.12 - Clock Detection Timing Diagram

A desirable additional feature is to be able to detect whether a valid clock signal is

present. This would provide a more reliable alternative to the carrier detect pin of the

X2010 transceiver, which is severely afflicted by noise (Figure 3.8, Figure 3.18). This

is easily implemented by detecting the delay between clock edges, which should be no

more than 2 chip times. Each time a clock edge is detected, a “watchdog” timer is set

to overflow in 2.2 chip times, which allows for a clock rate tolerance of 10%. If the

clock edges cease for more than 2.2 chip times, the timer will overflow, causing an

interrupt (Figure 3.12). The advantage of this approach is that it only incurs an

overhead of 6 instruction cycles for each clock period (to reset the timer), as no

additional processing is required unless the clock is actually lost.

It is expected that random noise pulses may occasionally be detected as a valid clock

signal, thus both the following conditions must be met to detect valid data:

1. At least 8 consecutive clock pulses have been detected.

2. Either:

a. The shift register contains a preamble byte.

b. The start of frame has been detected.

Therefore, the valid data flag will only be asserted by a valid preamble followed by a

start of frame sequence and frame body.

Li-Wen Yip School of Engineering, James Cook University 45

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3.3.3 Frame Synchronisation

3.3.3.3.1 Start of Frame Sequence Detection

The current mechanism for detecting the start of each frame is to prefix each frame

with several preamble bytes, followed by a single start of frame (SOF) byte. When the

receive buffer contains three preamble bytes and one SOF byte, the start of the frame

is detected.

However, without start and stop bits, the receiver will not initially be synchronised to

the start of each byte, thus the start of the frame cannot be detected by simply

decoding the preamble and SOF bytes.

Initially, the data bits are shifted into a 16-bit shift register as they are decoded. Each

time a data bit is received, the contents of the shift register are checked; if it contains

one preamble byte followed by one SOF byte, the start of frame is detected. Once this

occurs, the receiver is synchronised to the start of the first data byte, and can

commence decoding bytes normally.

As mentioned previously, the preamble byte should consist of alternating bits to

ensure synchronisation, i.e. 10101010. The Ethernet protocol uses 10101011 as a start

of frame byte, however since this technique only checks 16 bits of data, the SOF byte

should be as different as possible from the preamble byte. For Manchester encoded

data, this would be consecutive ones or zeros, i.e. 0xFF or 0x00.

Figure 3.13 - Start of Frame Detection

Li-Wen Yip School of Engineering, James Cook University 46

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3.3.3.2 Detecting the End of Frame

The current method for detecting the end of each frame is to use an end of frame

(EOF) character. However, this prevents the use of the EOF character within the body

of the frame, which cannot be enforced when the frame contains user data. Other

protocols solve this problem using bit-stuffing techniques. However, it would be

preferable to avoid such complexities in this project.

An alternative approach is to include the frame length as part of the header of each

frame. The problem with this approach is that the frame length cannot be verified by

the CRC until the entire packet has been received. However, consider the

consequences of an erroneous frame length value:

1. If the received frame length is less than the actual frame length, the

receiver will terminate reception prematurely, causing the CRC check to

fail.

2. If the received frame length is more than the actual frame length, the

receiver will continue receiving after the frame ends. This may have two

outcomes:

a. The receiver will be reset when it detects that the clock is no longer

present, and the frame will be discarded as if it were incomplete.

b. If for any reason a clock is still present, decoding will continue

until the receive buffer is full, and the additional bytes will cause

the CRC check to fail.

Li-Wen Yip School of Engineering, James Cook University 47

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.3.4 Software Buffers

Figure 3.14 - Popcorn Buffering

Data buffering is an important part of the encoding and decoding processes. The

current software only provides one buffer each for transmission and reception, which

precludes simultaneous data communications and processing. That is, when a packet

has been received, the next packet cannot be received until the previous one has been

processed.

One technique used to allow simultaneous data processing and reception is known as

popcorn buffering. This comprises two identical buffers, one used for reception, and

one used for processing. Once a frame has been processed, and the next one fully

received, the buffers are switched (Figure 3.14). This technique is also equally

applicable to data transmission.

This switchover should ideally be transparent to the receiving and processing

algorithms, thus a portable data structure is required to represent the buffers. An

example linear buffer data structure (Figure 3.15) consists of:

1. A contiguous block of memory which contains the buffer data.

2. An end pointer, which points to the next available memory location.

3. A cursor pointer, which points to any memory location up to the end

pointer.

The Size property always has the same as the value as the End pointer, and the Length

property is obtained using the scnsz assembler directive in MPASM.

Li-Wen Yip School of Engineering, James Cook University 48

Chapter 3: Development Remote Ad Hoc Sensor Networks

Figure 3.15 - Buffer Data Structure

Figure 3.16 - Buffer Data Structure Memory Map

The data memory block, end pointer, and cursor pointer are all stored in a contiguous

block of memory (Figure 3.16), which means that any block of memory at least three

bytes long can be used as a buffer. A particular buffer is selected by calling a macro

which loads up the addresses of the buffer to FSR0 and FSR1 (Figure 3.16). The

functions which may be called on this buffer include:

1. Clear the buffer.

2. Set the cursor location.

3. Get the cursor location.

4. Get the size (end) of the buffer.

5. Set the end of the buffer.

6. Write a byte at the current cursor location and increment the cursor.

7. Read a byte from the current cursor location and increment the cursor.

8. Check if the buffer is full (End == Length).

9. Check if the cursor is at the end of the data (Cursor == End).

Each of these functions is implemented as a macro, which manipulates the buffer

using FSR0 and FSR1.

Li-Wen Yip School of Engineering, James Cook University 49

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.4 MEDIA ACCESS CONTROL

As concluded in the literature review, the power save component of the MAC

protocol should implement a schedule consisting of alternating “high traffic” and “low

traffic” periods. Preamble sampling is to be implemented during the low traffic

period, with adaptive techniques used to optimise power savings for anticipated

network traffic. The preamble sampling technique will be modelled, discussed, and

optimised for static network parameters. Techniques for adaptively reconfiguring the

protocol will be discussed and developed, including synchronising schedules across

the network. This will be concluded with a discussion of techniques for media

contention and collision management.

3.4.1 Preamble Sampling

Recall that in preamble sampling, nodes periodically wake up and sample the medium

for activity; nodes remain awake if a preamble is detected, otherwise return to sleep

(Figure 2.5). The preamble is the same length as one sampling cycle, which

guarantees that it will be detected by all neighbouring nodes irrespective of their

relative phases.

The energy required to transmit and receive the extended preamble partially offsets

the power savings made during the sleep intervals, and also increases the probability

of collisions due to increased packet length. Therefore, the energy saving provided by

this technique will be dependent on the chosen sleep interval, as well as the network

conditions and hardware specifications. A model will be developed, which can be

used to determine the optimal sleep interval and maximum energy savings for a

particular scenario.

There are other performance metrics which are also affected by the sleep interval,

such as packet latency; however these are not of primary importance and thus shall

not be analysed.

Li-Wen Yip School of Engineering, James Cook University 50

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.4.1.1 Modelling and Optimisation

The following set of parameters describes the preamble sampling technique,

characteristics of the nodes, and network conditions:

1. The sleep interval, i.e. the time between each sample, t (seconds).

2. The power-up delay of the transceiver, i.e. the time required by the

receiver to provide a valid RSSI reading, TPWUP (seconds).

3. The time required to assess the channel, i.e. the time required by the

microprocessor to perform an A/D conversion on the RSSI signal, TA/D

(seconds).

4. The listen interval, T = TPWUP + TA/D (seconds).

5. The power consumed whilst the node is transmitting, Pt (Watts).

6. The power consumed whilst the node is receiving, Pr (Watts).

7. The average number of packets transmitted per second, f (Hz).

8. The average number of nodes affected by each transmission, n, which is

dependent on the network density.

The model will predict the average power saving per node for these parameters,

which as opposed to total power consumption allows the removal of parameters such

as baud rate and packet length. Other performance metrics, such as throughput and

latency will not be modelled, as they are of secondary importance to power

consumption. For now, the effects of packet collisions are ignored to simplify the

model, as collisions are relatively unlikely in a sparse low traffic network. Collisions

and subsequent retransmissions could be incorporated into the mode by defining a

new parameter, actual packet rate f’ (t, l, n, f), i.e. a variable dependent on the

preamble length, packet length, node density, and packet rate.

Li-Wen Yip School of Engineering, James Cook University 51

Chapter 3: Development Remote Ad Hoc Sensor Networks

The approximate average power consumption for an idle node is given by:

 [Watts] rsaving P
tT

P ⎟
⎠

⎜
⎝ +

=
t ⎞⎛ . (3.2)

The additional energy required to transmit the preamble is given by:

 [Joules] ttransmit tPE = . (3.3)

Assuming that on average each node will wake up halfway through the preamble, the

additional energy required to receive the preamble is given by:

 [Joules]
2

r
receive

tPE = . (3.4)

Therefore, the net power saving per node is given by:

() [Watts] EEfPP receivetransmitsavingnet − += . (3.5)

 [Watts]
2
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛

−
= r

trnet
tP

ntPfP
tT

tP . (3.6)

Optimising this equation for the largest power saving gives the following expression

for the optimal value of t:

 [Seconds]
2(
2 T

nPPf
TPt

rt

r −
+

= . (3.7)

The net power saving given in Eq. (3.5) is plotted against sleep interval for several

different network densities and packet rates in Figure 3.17. The definitions of the

various traffic rates used are presented in Table 3.1, and the fixed parameters derived

from data sheets [4, 38], are presented in Table 3.2.

Li-Wen Yip School of Engineering, James Cook University 52

Chapter 3: Development Remote Ad Hoc Sensor Networks

Table 3.1 - Classification of traffic rates

Traffic Rate Packet Rate (Hz)

Low 1/1800

Medium 1/60

High 1

Table 3.2 - Hardware Parameters

Parameter Value Derivation

T 1.05 ms TPWUP = 1 ms [4]

TA/D = 50 μs [39]

Pt 215 mW Iq(VGA) = 35mA [38]

Itx(X2010) = 8mA [4]

Vcc = 5V

Pr 35 mW Irx(X2010) = 7mA [4]

Vcc = 5V

Li-Wen Yip School of Engineering, James Cook University 53

Chapter 3: Development Remote Ad Hoc Sensor Networks

100us 1ms 10ms 100ms 1s 10s 100s
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

X: 0.01
Y: 0.02865

P
ow

er
 S

av
in

g
(W

)

Power Saving vs Sleep Interval

Sleep Interval (s)

X: 0.3162
Y: 0.03469Low Traffic

Medium Traffic
High traffic

n = 50

n = 20

n = 5 n = 5

n = 20

n = 50

n = 5

n = 20

n = 50

Figure 3.17 - Power Saving vs. Sleep Interval

Note in Figure 3.17 that the both the optimal sleep interval and potential power

savings are highly dependent on the amount of network traffic. Also note that the

saving is increased for lower values of n, thus this technique is well suited to sparse

networks.

Without preamble sampling, the idle power consumption of the radio is 35 mW

(Table 3.2). However, with preamble sampling, a power saving of up to 34.69mW is

possible, thus the power consumption per node is a mere 310 μW, plus the power

consumption of transmitting packet bodies. Even with a high traffic rate, a power

saving of 28.65 mW is possible. However the actual power savings would be slightly

less, due to a higher of probability packet collisions and subsequent retransmission.

Li-Wen Yip School of Engineering, James Cook University 54

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.4.1.2 Dynamic Reconfiguration

As discussed in Section 2.1.7 (p. 14), the power save protocol will extend the

preamble sampling concept, by including both scheduled and adaptive reconfiguration

to optimise the sleep interval for the anticipated traffic rate.

3.4.1.2.1 Scheduled Reconfiguration

Bulk data transfer will be constrained to brief intervals which occur at predetermined

times, thus an optimised reconfiguration can be scheduled for these periods. Section

2.1.7 (p. 14) discussed defining these “high traffic” periods so that all nodes are

continuously awake for the entire period. However, not all parts of the network will

be active at all times during this period. Therefore, rather than all nodes being

continuously awake, it may in fact be more energy efficient to optimise the preamble

sampling technique for the higher traffic rates. The optimal sleep interval would have

to be calculated beforehand at the application layer, based on the amount of traffic

anticipated during the high traffic period. However, depending on the actual traffic

rate, it may actually be more energy efficient for nodes to not sleep during this period.

This is especially true considering the increased probability of collisions.

3.4.1.2.2 Adaptive Reconfiguration

During network operations such as address allocation, replies from neighbouring

nodes will cause a period of localised high traffic immediately after the request. By

providing an interface for higher level protocols to dynamically reconfigure the MAC

layer, the sleep interval can be optimised based on this anticipated traffic. The

network layer header will include a “high traffic timer” field indicating how long, if at

all the source node will remain active for, so that neighbouring nodes can use a

shorter preamble for packets it sends to that node.

Note that this technique is particularly effective for broadcast requests such as address

allocation and route discovery, as every neighbouring node makes a power saving,

whilst only the requesting node consumes more power.

Li-Wen Yip School of Engineering, James Cook University 55

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.4.2 Schedule Synchronisation

The dynamic preamble scheduling scheme presented in the previous section provides

a good mechanism to optimise power savings during anticipated high traffic periods,

and maintains network connectivity during low traffic periods at a higher transmission

energy cost. However, a mechanism is needed to allow the traffic schedule to be

globally synchronised. Three such mechanisms shall be discussed:

1. An active synchronisation mechanism which is propagated globally and

initiated by a single node.

2. A phase discovery and correction mechanism which counters the effects of

clock drift.

3. A synchronisation request mechanism which allows nodes to

resynchronise if they believe they are completely out synchronisation with

the rest of the network.

3.4.2.1 Active Synchronisation

Although an ad hoc sensor network is by definition infrastructure-less, there will be a

sink node which all sensors periodically transfer their data to. The sink node will

likely be permanent, and hence is a logical point to initiate active synchronisation

operations from.

The active synchronisation operation will commence with the sink node broadcasting

a synchronisation message, which includes the value of its clock at the exact time the

message was transmitted (as opposed to the time when the message was queued for

transmission). Nodes which receive this message will update their clocks, and set a

timeout during which they will ignore all synchronisation messages. They will then

rebroadcast the message and include the exact time that they transmitted the message.

Synchronisation messages will use the longer preamble so that they will be received

by neighbouring nodes regardless of which traffic mode they are in.

A likely traffic schedule would be 5 minutes of high traffic followed by 6 hours of

low traffic, hence timing will be performed by a real time clock chip, which has a

precision of one second. Because the DS1305 real time clock chip [35] resets its

internal counter when the seconds register is written, even in the absence of any

Li-Wen Yip School of Engineering, James Cook University 56

Chapter 3: Development Remote Ad Hoc Sensor Networks

delays there will be a lag error of up to one second with each hop. Assuming the

values of the RTC chips’ internal counters are random and uniformly distributed, the

average lag will be 0.5 seconds per hop. Considering that the propagation and

processing delays will add to this error, the absolute value of the error can be reduced

by adding one second to the clock value each time a synchronisation message is

broadcast.

3.4.2.2 Phase Discovery and Correction

Consider the high traffic period to be divided into one second slots. The network

header for each packet transmitted during the scheduled high traffic period includes

the number of the slot it was transmitted in with respect to the source node. This

information allows neighbouring nodes to calculate the relative phase of their clock

schedules with a precision of one second, and if necessary adjust their schedule to

counter the effects of clock drift.

This concept of phase discovery and adjustment is similar to that used in [9].

However, in this case the phase information is piggybacked onto regular packets, and

hence incurs minimal overhead.

3.4.2.3 Synchronisation Request

Immediately after a node joins the network and is allocated an address, it should

request synchronisation from its neighbours using the low traffic preamble, so that it

may synchronise to the global traffic schedule. This should also be performed if a

node otherwise believes it has completely lost synchronisation with the rest of the

network, e.g. if it did not detect any activity during the last high traffic period.

Li-Wen Yip School of Engineering, James Cook University 57

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.4.3 Media Contention and Collision Management

In 2004, Sloots [2] developed a Carrier Sense, Multiple Access protocol with

exponential backoff. Before a frame is transmitted, the CD pin of the transceiver is

tested to check if the media is free. If the media is busy, the node generates a timeout

with exponential backoff:

 Timeout = 0.5s × 2n (3.8)

Where n is the number of times the node has tried to transmit. When n reaches a

predetermined retry limit, the transmission is abandoned.

There are two problems with this protocol which will be addressed in the following

sections.

3.4.3.1 Fixed Backoff Period

The first problem is that the initial timeout period is fixed at 0.5 seconds. If two nodes

unsuccessfully attempt to transmit at the same time, their subsequent retries will also

coincide, causing repeated collisions. The Ethernet protocol has dealt with this

problem by randomising the timeout according to the formula:

 Timeout = k × rand() × 2n (3.9)

Where k is the slot time, and rand() is a random number between 0 and 1. A random

number can be quickly generated by taking the CRC, which is pseudo-random for

each packet, and XORing it with TIMER3, which is pseudo-random for each retry.

This number will then be truncated using a bit mask, to limit the maximum timeout to

k × 2n.

Li-Wen Yip School of Engineering, James Cook University 58

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.4.3.2 Clear Channel Assessment

The second problem is that any noise present on the transceiver frequency may be

incorrectly be demodulated as a valid carrier, which has previously been noted by

Sloots [2].

This theory was tested by observing the voltage on the active low carrier detect (/CD)

line with no signal present. When a signal is present, the /CD voltage is stable at 0V.

However, when a ¼ Wavelength antenna is connected with no signal present, the

transceiver detects significant amounts of noise as a valid carrier (Figure 3.18).

As can be seen in Figure 3.18, the /CD voltage regularly drops below 0.8V (TTL logic

low), which would cause the node to incorrectly detect that a carrier is present. There

are several alternatives to using the /CD line to detect if a valid signal is present:

1. Low pass filter the /CD line, and perform an A/D conversion on it. If the

result is more than zero, then there is no valid signal present.

2. Perform an A/D conversion on the RSSI line. If the result is less than the

noise floor, then there is no valid signal present.

3. Use the clock detect flag as an indicator of whether a valid signal is

present.

Figure 3.18 - Carrier Detect (Active Low), No signal present, 5V/div, 1ms/div

Li-Wen Yip School of Engineering, James Cook University 59

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.5 ADDRESS ALLOCATION

As discussed in section 2.2.6 (p. 28), the address protocol for this protocol shall be

based on the concept of address spaces, and attempt to incorporate the salient features

of both [23, 31]. The improvements made to [23] can be summarised as follows:

1. A requesting node does not accept the first address offer it receives. Instead, it

waits for all replies to arrive, then accepts the largest offer (from [31]). This

promotes more even distribution of available addresses throughout the

network.

2. When a requesting node receives several offers from neighbouring nodes, it

does not explicitly reject each individual offer it did not accept. Instead, a

single broadcast message is used to accept the successful offer, which

implicitly rejects all other offers. This significantly reduces the number of

messages required to complete an address allocation operation.

3. The network will not be flooded with an address search message unless the

first address request is unsuccessful. This is achieved by including a retry

number in the request message, allowing recipients of the message to

determine how many unsuccessful requests have been made. This prevents

unnecessarily flooding the network with an address search message.

The operation of this protocol is described in the following sections.

Li-Wen Yip School of Engineering, James Cook University 60

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.5.1 Network Setup

For this network event, the protocol is identical to Tayal and Patnaik [23]. When the

very first node starts up, it will broadcast an AREQ (address request message), and

wait for a reply (Figure 3.19). Since there are no other nodes in the network, it will

not receive any replies, and will rebroadcast the AREQ message

AREQ_RETRY_LIMIT times. After this time it will conclude that it is not in range of

an existing network, and create a new network by taking possession of the entire

address space.

3.5.2 Node Join

When a node starts up, it will enter the INIT (initialisation) state and assume the

address 0x00, which is designated as an anonymous address for initialising nodes.

Since the node does not have a MAC address, it randomly generates an 8-bit unique id

(UID) to distinguish it from other nodes which are simultaneously initialising. The

node will broadcast an AREQ message, and wait for replies from neighbouring nodes

(Figure 3.19).

Neighbouring nodes which receive this message will check if they have any available

addresses. If a node has spare addresses, it will enter the ALLOC (allocation) state,

and mark half of its address space as under allocation. It will then send an AREP

(address reply message) indicating the address range it is willing to allocate (Figure

3.20).

Two distinct cases may arise from this scenario.

1. At least one neighbouring node has available addresses, and sends an

AREP message to the requesting node (Local Allocation).

2. There are no neighbouring nodes with available addresses. The requesting

node receives no replies, and hence rebroadcasts the AREQ message.

Neighbouring nodes receive the second request and infer that the first

request failed, so they initiate a global address search.

Li-Wen Yip School of Engineering, James Cook University 61

Chapter 3: Development Remote Ad Hoc Sensor Networks

Figure 3.19 - Address Request

Figure 3.20 - Address Offers

Figure 3.21 - Offer Accepted

Figure 3.22 - Idle

Li-Wen Yip School of Engineering, James Cook University 62

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.5.3 Local Allocation

In this case, the requesting node does not immediately reply to any AREP messages it

receives, rather it caches them until a timeout expires (Figure 3.20). This timeout is

set so that the requesting node has the opportunity to receive replies from all its

neighbours before deciding which offer to accept. This feature promotes a more even

distribution of addresses throughout the network, as implemented in ZAL [31].

Once the reply timeout has expired, the requesting node will broadcast an AACK

(address accept message) indicating which offer it is about to accept (Figure 3.21). It

will take possession of the largest address space it was offered, and enter the IDLE

state (Figure 3.22).

Assuming all allocating nodes received the AACK message, the node whose offer was

accepted will delete its addresses under allocation, whilst all other nodes will

repossess their address under allocation (Figure 3.22). Note in [23] that the requesting

node unicasts an AREJ (address reject message) to every node whose offer it did not

accept. In this protocol the rejection is implicit, significantly reducing the number of

transmissions required to complete the operation.

Li-Wen Yip School of Engineering, James Cook University 63

Chapter 3: Development Remote Ad Hoc Sensor Networks

3.5.4 Global Address Search

A global address search will be initiated when a node receives an address request with

a retry number of two or higher, and does not have any available addresses. Firstly, it

will send a negative reply to the requesting node to acknowledge that it has received

the request. Secondly, it will broadcast an ASRCH (address search) message. Nodes

which receive this message and have available addresses will send an address reply

back to the requesting node. The requesting node will reply with either an AACK or

an AREJ. Nodes which do not have available addresses will send a negative reply

back to the requesting node, rebroadcast the ASRCH message, and ignore all future

ASRCH message originating from the same node. In this way, the ASRCH message

will be flooded throughout the network until an available address space is found.

[23] Does not specify how remote nodes are able to route their replies back to the

requesting node, and vice versa. Here are two techniques that could be used to achieve

this:

1. Each ASRCH message includes a route back to the requesting node (Figure

3.23). Therefore, each time a node broadcasts an ASRCH message it appends

its own address to this route. This technique is used in [27]. A disadvantage of

this technique is that in a large and sparse network, the address list could get

quite long, introducing additional overhead into the operation.

2. When a node broadcasts an ASRCH message, it enters a proxy state, in which

it forwards all AREP and NREP messages back toward the requesting node. In

this way, a well-defined connection is formed between the requesting and

allocating nodes. However, each proxy node only knows about the next node

in the route, thus routing information is not needed in the reply messages. This

is very similar to the DSR adaptation developed by Steven Sloots [2]. This

technique introduces an opportunity to reduce the amount of traffic sent back

to the requesting node: If a proxy node receives two positive replies, it can

reject the smaller offer locally, and only send the larger offer back to the

requesting node. The disadvantage of this technique is its complexity.

Li-Wen Yip School of Engineering, James Cook University 64

Chapter 3: Development Remote Ad Hoc Sensor Networks

Figure 3.23 - ASRCH message contains a routing information

Li-Wen Yip School of Engineering, James Cook University 65

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

Chapter 4

IMPLEMENTATION AND TESTING

4.1 HARDWARE PLATFORM

4.1.1 Node PCB Design and Construction

The hardware designed for this project was based on the hardware designed by Steven

Sloots [2] in 2004 (Figure 3.1, p29), with the major modifications listed below:

1. The VGA bypass relay was replaced with an ADG918 CMOS switch [34].

2. An emitter follower voltage to supply the ADG918 with 2.75 Volts.

3. A DS1305 Real Time Clock Chip [35] added to the microcontroller’s SPI

bus.

4. An RC network to reduce the noise on the X2010 transceiver’s RSSI line.

5. An RJ12 socket enabling compatibility with the Microchip ICD2.

Although the same component interconnections were retained, the PCB was

completely redesigned to accommodate the additional hardware, with an emphasis on

features which would assist debugging and modifications to both hardware and

software. Some of these features include:

1. Strict rules for track sizes, which allows easy identification of power tracks

and RF tracks.

2. Easily accessible test points for transceiver data pins and power rails.

3. Additional status LEDs and a power indicator LED.

4. Grouping of related components and tracks, and use of component dress

where practical.

Li-Wen Yip School of Engineering, James Cook University 66

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

Microcontroller IO pins were not assigned until the PCB design stage, which allowed

tracks to be routed with minimal use of vias and allowed all tracks connected to a

particular devices to be grouped together into a bus. An 8-pin DIP IC socket was

placed in series with the transceiver’s four data lines, to allow certain functions to be

isolated and / or externally controlled. The connections are normally made with short

lengths of bell wire.

Care was taken to separate components and tracks which may cause interference with

each other, and separate ground planes were poured for the digital, analogue, and RF

sections of the circuit.

The Microchip ICE2000 in-circuit emulator was used as the microprocessor

development platform, which connects to the PCB via a 44-pin PLCC socket. An RJ-

12 socket was included to allow compatibility with the Microchip ICD2 in-circuit

debugger, however was not used due to problems obtaining a PIC18C452 device in a

44-pin PLCC package.

Each PCB was constructed in stages, with exhaustive testing at each stage of

completion. In particular, after the power supply components and ground vias were

installed, all nets on the PCB were tested to ensure that they were connected to the

correct voltage levels. All external peripherals were tested in software, to ensure that

they were functioning and communicating correctly with the microcontroller. A

particular problem encountered was that the interrupt line of the DS1305 clock chip

did not have a 4.7 kΩ pull-up resistor as required, which caused it to be continuously

asserted.

Construction of two functional nodes was planned, so that MAC and network layer

protocols could be developed and tested on a real hardware platform. Unfortunately,

after the first node was fully constructed, it was discovered that the 44-pin PLCC

footprint used from Mr Sloots’ PCB libraries was incorrect, rendering the entire PCB

useless. As a result, the PCB had to be disassembled, and redesigned to accommodate

the correct footprint.

Li-Wen Yip School of Engineering, James Cook University 67

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

Figure 4.1 - Ad hoc radio node PCB; Revision 3 as constructed

1 X2010 transceiver module.

2 Emitter follower voltage source.

3 Power LED.

4 Communications isolation / external
connection header.

5 Power connection.

6 RS-232 interface.

7 50Ω antenna connection.

8 ADG918 CMOS switch carrier board.

9 RSSI low pass RC network.

10 Reset switch and slow power-on reset
circuit.

11 Indicator LEDs.

12 RJ12 connector for Microchip ICD2
(not installed).

13 MAX232 level shifter.

14 ADG918 CMOS switch carrier board
(reverse side).

15 Power track.

16 AD8369 variable gain amplifier.

17 External 4Mhz crystal oscillator.

18 44-pin PLCC socket for Microchip
ICE2000.

19 DS1305 Real Time Clock.

20 FM25C160 FRAM.

Li-Wen Yip School of Engineering, James Cook University 68

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.1.2 ADG918 / ADG919 Wideband CMOS Switch

The ADG918 / ADG919 were not available through any of the university’s regular

suppliers, so several samples had to be ordered directly from Analog Devices. The

devices were only available in a tiny MSOP-8 Package, which is extremely difficult to

solder by hand, and impractical to transfer to a new PCB if required. To solve this

problem, a carrier board was designed to plug into a regular DIP-8 IC socket (Figure

4.2). Unfortunately, this approach had some unforseen consequences, which will be

discussed shortly. The ICs was soldered to the carrier boards with the aid of a

magnifying glass and some nail varnish, and thoroughly checked for continuity and

short circuits.

Once the carrier boards were constructed, they were tested to ensure they were

providing sufficient off isolation, i.e. port separation in the off state. The switch is

connected between the input and output of the RF amplifier, creating a positive

feedback loop. To prevent oscillation or distortion, the gain of the loop must be much

less than one i.e. the off isolation must be much greater than the amplifier gain. Due to

the licence-free power limit in the 433 MHz band, the amplifier will be operated with

a maximum gain of 14dB.

A 433 MHz, -60dBm signal was fed into the common port of the switch via the PCB

mounted BNC connector, and a spectrum analyser connected to port 1 via an alligator

clip terminated coaxial cable. The signal strength was measured in both the “on” and

“off” states, with the difference being the inferred port separation.

The ADG918/919 data sheet [34] specifies the off isolation at 433 MHz to be

approximately -43dB. However, the initial test results indicated this isolation to be a

mere -10dB. It was observed the alligator leads terminating the coaxial cable were

unshielded and approximately ¼ λ (17 cm) in length. It was therefore inferred that

crosstalk from these leads was affecting the result, so the experiment was repeated

with a coaxial cable soldered directly to the carrier board (Figure 4.3). This second

test indicated the off isolation to be approximately -30dB. The carrier board was then

soldered directly to the PCB to eliminate any impedance mismatching or crosstalk

caused by the IC socket. A subsequent third test indicated the off isolation to be

approximately -35dB (Figure 4.4, Figure 4.5). Whilst this separation is sufficient to

Li-Wen Yip School of Engineering, James Cook University 69

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

prevent oscillations in the amplifier, the result could be improved with better RF

design, e.g. sufficient shielding between RF lines.

A final test was performed to measure the current consumption of the device in the on

state. The specified current consumption for the device is 1 μA, however the

multimeter used had a precision 10 μA, and as expected did not record a reading.

Despite this, it is clear that this device provides a vast power saving over the

previously used relay.

Li-Wen Yip School of Engineering, James Cook University 70

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

Figure 4.2 - ADG918/ADG919 Carrier Board

Figure 4.3 - Carrier board soldered directly to PCB;

Coaxial cable soldered directly to carrier board

Li-Wen Yip School of Engineering, James Cook University 71

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

Figure 4.4 - Signal strength in ON state (-75dBm)

Figure 4.5 - Signal strength in OFF state (-110dBm)

Li-Wen Yip School of Engineering, James Cook University 72

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.2 MANCHESTER ENCODING AND DECODING

4.2.1 Manchester Encoding

4.2.1.1 Development

A number of problems were encountered during the development of the encoding

algorithm, mainly due to undocumented problems with the operation of the

PIC18C452 Capture/Compare modules.

1. The ‘Toggle output on match’ compare mode does not work in the MPSIM

simulator (MPSIM v8.62.01.0).

2. The ‘Generate software interrupt on compare match (CCPIF bit is set, CCP

pin is unaffected)’ mode forces the output low when the CCPxCON

register is written. (ICE2000)

The ‘Generate software interrupt’ mode was used when there were two consecutive

similar chips, as the output did not need to be changed. Consequently, when there

were two consecutive high chips, the output was forced low halfway through the first

chip, corrupting the data.

The solution was to skip a chip period if there are two consecutive similar chips,

rather than programming the output not to change. This approach also has some

additional benefits:

1. The CCP module does not need to be reprogrammed for every chip; rather

it can be left in ‘toggle on match’ mode.

2. Each time a chip period is skipped, the microprocessor is freed up for one

chip period.

Li-Wen Yip School of Engineering, James Cook University 73

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.2.1.2 Maximum Encoding Speed

The Manchester encoding software was set up to continuously transmit 0xFF at 5000

baud, which requires one transition every 100μs. The microprocessor is running at 4

MHz, therefore 1 instruction cycle = 1μs. The code was run with a breakpoint at the

end of the high priority interrupt service routine, and the TMR3 and CCP2R registers

were examined to determine how many processor cycles elapsed between the interrupt

occurring and resumption of normal program flow. The results of these tests are

presented in Table 4.1.

Even though each data chip takes 47 cycles to encode, the encoder is able to run faster

than this because each chip is calculated one chip period in advance, thus the encoder

can accumulate up to one chip period of slack and still remain in synchronisation.

Therefore, the minimum theoretical chip length should be equal to the average

number of cycles required to calculate one chip. Each byte is composed of 8 clock

chips, 8 data chips, and one byte fetch, which adds up to 676 cycles, or an average of

42.25 cycles per chip, therefore the encoder should be able to run at a chip length of

43μs, or 11628 baud.

The software was set up to continuously transmit 0xFF at various baud rates, and the

resulting waveform was observed on a cathode ray oscilloscope. To provide an

additional indication of whether the byte was properly encoded, the frequency and

duty cycle were also measured using a digital multimeter. These results are presented

in Table 4.2.

As expected, the encoder produced a perfect square wave at up to 11628 baud, or a

chip length of 43μs, whereas when the chip length was reduced to 42μs, the square

wave became unstable, presumably due to the encoder not being able to keep up with

the baud rate.

Note that this experiment did not include the data link layer; if the data link layer is

included it takes 702 cycles to encode a single byte, or 43.875 cycles per chip. This

should not affect the encoder’s ability to run at 9600 baud.

Li-Wen Yip School of Engineering, James Cook University 74

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

Table 4.1 - Instruction Cycles for Encoding Operations

Operation Instruction Cycles

Encode Clock Chip 37

Encode Data Chip 47

Encode Data Chip + Fetch Next Byte 51

Fetch byte from buffer (DL Layer) Up to 26

Table 4.2 - Frequency and Duty cycle measurements

Baud Chip Period Frequency Duty Cycle Waveform

1200 416 Cycles 1.202kHz 50.0% Stable Square Wave

2400 208 Cycles 2.404kHz 50.0% Stable Square Wave

4800 104 Cycles 4.809kHz 50.0% Stable Square Wave

9600 52 Cycles 9.618kHz 50.0% Stable Square Wave

11628 43 Cycles 11.632kHz 50.0% Stable Square Wave

11905 42 Cycles 11.720kHz 50.0% Unstable Square Wave

12500 40 Cycles 16.00Hz Unstable Groups of 10 pulses.

Li-Wen Yip School of Engineering, James Cook University 75

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.2.1.3 Correct Byte Transmission

The encoding software was set up to continuously transmit a variety of bytes at 5000

baud, and the waveform was viewed on a cathode ray oscilloscope to verify the byte

was being correctly transmitted.

All the tested were completed successfully, as shown in Table 4.3.

Table 4.3 - Byte Waveforms

Hex Binary Waveform

0xAA 10101010

0x66 01100110

0xEA 11101010

0x42 01000010

Li-Wen Yip School of Engineering, James Cook University 76

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.2.2 Manchester Decoding

4.2.2.1 Clock Synchronisation

The clock synchronisation function of the Manchester decoder was tested by setting

the decoder to run at 5000 baud, and feeding a square wave into the receive data

input. The frequency of the square wave was gradually increased, and noting the

frequencies at which the clock detect flag changed state.

0 1 2 3 4 5 6
0

1

Frequency (kHz)

C
lo

ck
 D

et
ec

t F
la

g

Clock Detect vs Frequency

2.75kHz2.31kHz

4.57kHz

2.27kHz 2.79kHz 4.52kHz

Figure 4.6 - Clock Detect Flag vs. Frequency

The first spike corresponds to a 2.5 kHz square wave, which is decoded as a

continuous transmission of 0xAA or 0x55. The second spike corresponds to a 5.0 kHz

square wave, which is decoded as continuous transmission of 0x00 or 0xFF. A

breakpoint was set in the code to stop the program when 8 bits have been received,

and the contents of the shift register were checked to verify that these waveforms

were being correctly decoded.

Li-Wen Yip School of Engineering, James Cook University 77

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.2.2.2 Maximum Decoding Speed

The Manchester decoding software was run with a breakpoint at the end of the high

priority interrupt service routine, and the number of cycles required to perform

various decoding operations was calculated by examining the values of TMR3 and

CCPR1.

Table 4.4 - Instruction Cycles for Decoding Operations

Operation Instruction Cycles

Decode Clock Chip 41

Decode Data Chip 39

Decode Data Chip + Save Byte 45

Detect SOF Up to 20

Process a byte (DL Layer) Up to 30

Detecting the SOF involves decoding one clock chip, one data chip, and running the

SOF detect routine – a total of up to 100 cycles, or 50 cycles per chip.

Decoding one byte involves decoding 8 clock chips, 8 data chips, saving one byte, and

processing one byte – a total of 676 cycles, or 42.25 cycles per chip.

Clearly in both cases, the decoder can comfortably run at 9600 baud, or 52 cycles per

chip.

4.2.2.3 Packet Reception

For this experiment, a second node was set up to transmit a short packet containing a

plain text message. The first node was set up to decode the message, and break when

it had decoded the message and verified the CRC. A screenshot showing the received

packet stored in RAM is presented in Figure 4.7.

Li-Wen Yip School of Engineering, James Cook University 78

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

Figure 4.7 - Message successfully received (The answer is 42!)

4.2.3 Software Buffers

The popcorn buffering technique described in chapter 3 was not implemented due to

time restrictions. However, the buffer data structures were implemented, and proved

to be very handy for buffering incoming and outgoing data, as well as general purpose

data storage.

Li-Wen Yip School of Engineering, James Cook University 79

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.3 MEDIA ACCESS CONTROL

4.3.1 Clear Channel Assessment

Clear channel assessment (CCA) is an essential function for both the preamble

sampling and CSMA protocols at the MAC layer. As noted previously, the Carrier

Detect line is unsuitable for this function as it is severely affected by noise. The

proposed solution was to perform an analogue to digital conversion on the RSSI

(received signal strength indicator) signal and compare it to the average noise floor.

Unfortunately, it was observed during testing that the noise generated by the ICE2000

caused the carrier detect to be continuously asserted, and the RSSI line to indicate a

very strong signal. This was unexpected, as the PCB was designed to avoid

interference between digital and analogue circuitry. However, further investigation

showed that the interference had the similar effect even when the ICE2000 was

completely electrically isolated from the transceiver.

Due to this problem, the “clock detect” flag of the Manchester decoder was used as a

clear channel assessment function. As a result, the sampling period had to be

increased to 10 ms to allow enough for the receiver to stabilise, and the decoder to

acquire and verify the Manchester clock. Hopefully, this problem will not occur with

an actual microprocessor, so the RSSI can be used for CCA and the sampling period

reverted to 1.05 ms.

Li-Wen Yip School of Engineering, James Cook University 80

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.3.2 Preamble Sampling

The preamble sampling algorithm was implemented using TIMER0 of the

PIC18C452 microprocessor, which allows a sleep interval of up to 16.777 seconds

(With Tcycle = 1 μs and a 1:256 pre-scaler). The sleep interval and preamble length

were stored as variables as RAM, which allowed them to be dynamically

reconfigured. Two subroutines were implemented to reconfigure the sleep period and

preamble length for high traffic and low traffic respectively. These subroutines, as

well as an override flag were made accessible to the network layer.

As mentioned previously, the sampling period was increased to 10 ms, hence the

power savings were remodelled with this modified parameter. The optimal sleep

intervals for a very sparse network (n = 3) were found to be 55.6 ms for high traffic (f

= 1), and 2.7746 seconds for low traffic (f = 1/1800).

The first experiment conducted was to validate the assumption that average power

consumption of the X2010 transceiver is linearly related to the duty cycle. An

ammeter was connected in series with the radio’s power supply, and the average

current consumption measured for various duty cycles with the sampling period fixed

at 10 milliseconds. The results presented in Figure 4.8 confirm the assumption that

power consumption is linearly related to the duty cycle. Note that there is some

random variation for duty cycles between 1% and 5%, however this can be attributed

to the precision of the multimeter used for the experiment.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
Power Consumption vs Duty Cycle (0%-10%)

Duty Cycle (%)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

0 20 40 60 80 100
0

5

10

15

20

25

30
Power Consumption vs Duty Cycle (0% - 100%)

Duty Cycle (%)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 4.8 - Power Consumption vs. Duty Cycle for X2010 Transceiver

The second experiment was to test if the preamble detection mechanism was working

correctly. A receiving node was set up with a sleep interval of five seconds, and a

Li-Wen Yip School of Engineering, James Cook University 81

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

transmitting node was set up to transmit a 2.5 kHz square wave. When the

transmitting node was switched on, the receiving node’s RXEN (receive enable) light

turned on within five seconds. The RXEN light remained on, indicating that the MAC

layer had detected a valid preamble and was waiting for the start of frame sequence.

When the transmitting node was turned off, the RXEN light immediately went out,

indicating that the MAC layer had ceased to detect valid data, and hence switched off

its receiver for the remainder of the sleep interval.

The third experiment was to verify that the preamble sampling algorithm does not

affect link reliability. One node was set up to transmit a packet upon reset, with a

preamble length of 200ms. A Second node was set up to receive these packets, with a

sampling interval of 200ms. An indicator LED on the receiver was programmed to

flash every time a packet was successfully received. Of twenty packets transmitted,

every one was received successfully, indicating that preamble sampling does not

affect link reliability.

Li-Wen Yip School of Engineering, James Cook University 82

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.3.3 Scheduled Reconfiguration

The DS1305 real time clock chip provides two time-of-day alarms, with

corresponding IRQ lines. For the purpose of testing, the alarms were configured to go

off every thirty seconds, and switch the node to high traffic mode for ten seconds. The

receive enable LED was observed to visibly change frequency for ten seconds every

thirty seconds, indicating that this simple schedule was working properly.

4.3.4 Dynamic Reconfiguration

In order to test the basic concept, a reconfiguration protocol similar to BECA [11] was

implemented, which does not require any interaction with the network layer. When a

node transmits a packet, it switches to high traffic mode until a timeout expires,

assuming that neighbouring nodes which received the packet will all be in high traffic

mode for the same period. When a node successfully receives a packet, it samples at

the high traffic rate until a timeout expires. However, it does not change its preamble

length until it transmits a packet itself, as not all of its neighbours may be in high

traffic mode.

In order to allow this protocol to operate alongside the scheduled reconfiguration

protocol, neither protocol was allowed to directly reconfigure the preamble sampling

protocol. Instead, both protocols use flags to indicate their state, and additional logic

was added to set the configuration based on the state of these flags.

This protocol was tested with two nodes as proof of concept. Two nodes were set up

to bounce a packet between each other ten times with a one second delay, and one

node was set up to transmit the initial packet on reset. The high traffic mode timeout

was set at five seconds. The initial packet was observed to take several seconds to

transmit because of the long preamble, whilst the remaining transmissions resulted in

only a brief flash of the transmit LED. Both nodes were observed to remain in high

traffic mode for five seconds after the last transmission, as indicated by rapid flashing

of the receive enable LED.

This protocol is fairly effective, as it allows all the nodes responding to a broadcast

request to save power by using the shorter preamble. However, it lacks intelligence, as

nodes within a one hop radius of any network activity will unnecessarily switch to

high traffic mode, and nodes will remain in high traffic even if they are not expecting

Li-Wen Yip School of Engineering, James Cook University 83

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

any further activity. It can be observed that this simple protocol would only be

effective if transmission consumes much more power than listening.

This protocol was then adapted to be use information from the network layer, with the

packet transmission subroutine modified to allow the preamble length to be

overridden on a per-packet basis. Unfortunately, this could not be tested, as the

network layer implementation was not completed.

Li-Wen Yip School of Engineering, James Cook University 84

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.4 ADDRESS ALLOCATION PROTOCOL

4.4.1 Simulation

Sloots noted that testing and evaluating his routing protocol with only two physical

nodes was a time consuming procedure, as it required that the nodes’ state was

manually changed before each hop [2]. This was sufficient to demonstrate that the

protocol was functional; however it did not allow the performance of the protocol to

be qualitatively measured.

The adaptive preamble sampling protocol and synchronisation mechanisms can be

tested and evaluated with only two physical nodes, as these protocols only operate at

the data link layer. However, this does not provide any indication of how well the

protocol performs in a real network running a real application.

The addressing protocol could be tested by the same procedure used by Sloots,

however this would provide no means of determining whether the modifications made

to [23] actually offer power savings in a particular scenario.

The only real solution to this problem is software simulation, and in fact all of the

reviewed research into new protocols included simulation results. The ubiquitous

simulation tool for this area of research is ns-2 [40], although some researchers have

used GloMoSim [41]. Ns-2 was chosen for this project, purely because it is more

popular.

Li-Wen Yip School of Engineering, James Cook University 85

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.4.2 NS-2 Simulation Environment

NS-2 [40] is an object-oriented, discrete event driven network simulator developed

written in C++ and OTcl. It is currently developed by the VINT project at the

University of California, Berkeley. It was originally only capable of simulating wired

IP networks. However, the Rice University Monarch (Mobile Network Architecture)

Extensions [42] add wireless capabilities, and have since been assimilated into the

main ns-2 build.

The simulator consists of an event scheduler, and a library of network component

objects, both of which are written in C++. Therefore, any new network component

objects such as new protocols must be implemented in C++. Adding new modules

requires that the ns-2 binary be recompiled from source. OTcl (object oriented Tcl) is

used to build a simulation scenario using the precompiled network component objects.

The ns-2 network simulator is designed to run under a UNIX/LINUX environment,

thus the CYGWIN environment is required to compile and run the simulator under

Microsoft Windows. The simulator could not be compiled until it was realised that

some additional CYGWIN packages were required. Some of the other modules

refused to compile for unknown reasons, however binary executables were easily

obtained for these modules.

Li-Wen Yip School of Engineering, James Cook University 86

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.4.3 Design

There are two main entities of concern in the address allocation protocol: nodes and

packets. The following fragments of C++ code define the properties of these entities:

Table 4.5 - Definition of Packet

/* Packet Types:
 * AREQ = Address Request
 * AREP = Address Reply (Offer)
 * NREP = Negative Reply
 * AACK = Address Accept
 * PACK = Proxy Address Accept
 * ASRCH = Initiate Address Search
 */
enum {AREQ, AREP, NREP, AACK, AREJ, ASRCH};

struct packet {
 int daddr; // destination address
 int saddr; // source address
 int type; // message type
 int seq; // number of times this message has been sent
 int uid; // unique ID of the requesting node
 int addrs[2]; // address space being allocated
 int route[10]; // route back to the requesting node
 int route_size; // number of addresses in the route
}

Table 4.6 - Definition of Node

/* States:
 * INIT = Initialising
 * IDLE = Idle
 * ALLOC = Allocating addresses
 * PROXY = Acting as an allocation proxy
 */
enum {UNINIT, INIT, IDLE, ALLOC, PROXY};

class node {
 int state; // Node State
 int uid; // Unique identifier;
 int my_addr[2]; // My Address Space

 Variables for Initialisation //
 int unt; // AREQ retry counter areq_retry_co
 static const int AREQ_LIMIT; // AREQ retry limit
 static const int AREQ_TIMEOUT; // AREQ retry timeout
 int arep_recv_count; // AREP received counter
 int nrep_recv_count; // NREP received counter
 Packet* best_offer; // Best offer
 int best_offer_size; // Size of the best offer

 // Variables for Allocation
 int arep_retry_count // AREP retry counter
 static const int AREP_RETRY_LIMIT; // AREP retry limit
 static const int AREP_TIMEOUT; // AREP retry timeout;
 int under_alloc[2]; // Allocated Address Space
 Packet* request_source; // the AREQ/ASRCH we are replying to
}

Li-Wen Yip School of Engineering, James Cook University 87

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

The address allocation protocol is entirely event driven. Events may be asynchronous,

e.g. the arrival of a packet, or scheduled, e.g. a timeout. Before the protocol was

implemented in C++, it was designed using flowcharts, showing the sequence of

actions which occur in response to each event. This approach is advantageous, as it

provides a detailed design which can be implemented on any platform, in any

programming language. The flowcharts thoroughly describe the control and data flow

of each event, yet their graphical nature makes them easy to understand.

The important events for the protocol are:

1. Node startup.

2. Initialisation timeout.

3. Allocation timeout.

4. AREQ message received.

5. AREP message received.

6. NREP message received.

7. AACK message received.

8. AREJ message received.

9. ASRCH message received.

Appendix A contains the flow charts for each of these events.

Li-Wen Yip School of Engineering, James Cook University 88

Chapter 4: Implementation and Testing Remote Ad Hoc Sensor Networks

4.4.4 Implementation

Both Mr LM Patnaik and PA Tayal [23] were contacted to try and obtain the source

code they used for their simulation, as the new protocol is merely an adaptation of

theirs. However Mr Patnaik could not be contacted, and Mr Tayal no longer had the

source code in his possession.

The addressing protocol was partially implemented in C++ within the ns-2

framework. However, despite weeks of endeavouring, the protocol could not be made

to work in the simulator. Unfortunately, development had to be terminated due to time

restrictions.

The C++ code as written is listed in Appendix D.

Li-Wen Yip School of Engineering, James Cook University 89

Chapter 5: Discussion of Results Remote Ad Hoc Sensor Networks

Chapter 5

DISCUSSION OF RESULTS

5.1.1 Hardware Architecture

For this thesis project and Steven Sloots’ thesis project, the Microchip ICE2000 in-

circuit emulator was used as the microcontroller development platform. It was

observed that the RF noise generated by the ICE2000 interfered with the RSSI and

CD readings of the radio transceiver. There were also more practical problems, such

as requiring a dedicated ICE2000 and PC for each node being tested. None of the

ICE2000 specific features were used during development, hence a better solution

would be to use a Microchip ICD2 in-circuit debugger with a DIP-40 PIC18F452

device installed on the PCB. This would allow the node to be run independently of the

development hardware; however the node could still be used with the ICE2000 via a

PLCC-44 to DIP-40 adaptor board.

The ADG918/919 wideband CMOS switch performed excellently, with vast power

savings over the previously used bypass relay. However, the off separation could be

improved by better RF design. In particular, all RF components (or their carrier

boards) should be soldered directly to the PCB.

5.1.2 Manchester Encoding and Decoding

The old Manchester encoding and decoding algorithms were only able to operate at

2400bps [2]. In contrast, the new algorithms perform the same tasks using 75% less

instructions cycles, and thus operate comfortably at 9600bps. Encoding and decoding

are facilitated by compare and capture interrupts, hence the time at which an event

occurs is not dependent on the time it is processed, and vice versa. Therefore, there is

some slack in the system, which allows data link layer processing tasks to also be

executed under interrupt alongside the encoding and decoding tasks.

Li-Wen Yip School of Engineering, James Cook University 90

Chapter 5: Discussion of Results Remote Ad Hoc Sensor Networks

The decoding algorithm synchronises to the encoded clock in the Manchester signal,

which provides much faster and more reliable synchronisation than using start and

stop bits, and eliminates the associated 25% bandwidth overhead. In fact, as shown in

Figure 4.6, the clock can drift by about 8% in either direction before synchronisation

is lost. In theory, synchronisation should still be possible with a much larger drift, but

the clock detect mechanism restricts the allowable drift to ensure the integrity of the

data.

In addition to the 75% saving in instruction cycles, every time the data bit changes,

the processor is freed up for an entire chip period, effectively halving the instruction

cycles required to calculate that bit. Assuming that for random data, there is a 50%

chance of this occurring on each bit, the average number of instruction cycles used

will reduced by another 25%, resulting in a total saving of 81.25% for the encoding

algorithm. This could be exploited by increasing the transmission rate, which reduces

channel utilization and hence the probability of collisions. Alternatively, the processor

can use the spare instruction cycles to concurrently perform data processing and

communication, which is made possible by the portable data buffer structures

developed. During any remaining instruction cycles, the microprocessor can be

powered down, resulting in significant power savings. To enable this, the chip rate

generator (TIMER1) must be clocked from an internal RC oscillator, so it can

continue to run whilst the microprocessor is powered down. Whilst this reduces the

accuracy of the baud rate, this is not a problem since the decoder can comfortably

tolerate a clock drift of up to 8%.

Another advantage of using Manchester encoding is that receiver can determine the

data rate being used by measuring the frequency of the preamble. This allows the data

rate to by dynamically varied by the transmitter, perhaps to adapt to changes in the

link quality.

5.1.3 MAC Protocol

The adaptive preamble sampling protocol was implemented and demonstrated to be

functional, and provides significant power savings for idle nodes’ radios. It was

demonstrated through modelling that these power savings are up to 99% for a very

low traffic network. However, the model used to obtain these results does not include

the adaptive reconfiguration, nor does it consider the length of each packet or the

Li-Wen Yip School of Engineering, James Cook University 91

Chapter 5: Discussion of Results Remote Ad Hoc Sensor Networks

energy wasted as a result of collisions. Software simulation is required to more

accurately determine the power savings that can be provided by this technique.

5.1.4 Address Allocation Protocol

An innovative addressing protocol was developed and based on [23, 31], with

modifications predicted to reduce power consumption. Some of the modifications

were to eliminate redundant transmissions, which will save a finite amount of power

with no impact on the operation of the protocol. However, the other modifications

were to promote more even distribution of addresses throughout the network, and to

reduce unnecessary flooding.

This protocol was partially implemented in ns-2, however unfortunately could not be

tested. However, a logical analysis can be used to observe the following points:

1. Most address allocation operations should take place without the need for a

global address search, thus the majority of operations will occur locally.

Ideally, the number of messages required to complete the operation is 1 + 2n,

where n is the number of neighbouring nodes. However, by eliminating the

rejection messages, the number of messages is reduced to 2 + n.

2. Promoting a more even distribution of addresses reduces the probability of

address depletion. When a global address search does occur, waiting for the

largest offer instead of accepting the first offer brings more addresses to the

area of the network where the depletion occurred.

Clearly, a software simulation is required to better understand the dynamics of this

protocol.

Li-Wen Yip School of Engineering, James Cook University 92

Chapter 6: Summary Remote Ad Hoc Sensor Networks

Chapter 6

CONCLUSION

The original goals of this thesis project were to improve the hardware platform,

develop and implement a dynamic address allocation protocol, and to develop and

implement a power saving media access protocol.

The improvements to the hardware platform were very successful. The bypass relay

was replaced with a solid state switch which consumes virtually no power, which

significantly reduces the energy cost of transmission. Improved Manchester encoding

and decoding techniques were implemented, which provide much more reliable

synchronisation, zero clock drift, eliminate the need for start and stop bits, and require

75% less instruction cycles. An efficient clock detection technique was also

developed, which adds another mechanism to detect whether a valid signal is present.

An extensive literature review was carried out into dynamic address allocation

techniques, and it was decided that the address space concept was most suitable for

this project. Two existing protocols were logically analysed, combined, and improved

upon to create an energy efficient, low maintenance addressing protocol. It was

quickly realised that the only way to quantitatively analyse this protocol was through

software simulation, thus it was decided to implement and test the protocol in the ns-2

simulator. Unfortunately, this was only partially completed due to technical problems

and time constraints.

Existing power saving techniques were also researched, and it was decided that a

scheduled rendezvous several times a day would be best suited to the likely traffic

patterns for a data logging application. Several techniques were developed and

implemented to ensure that the schedule is synchronised across the entire network. A

preamble sampling technique is employed between the rendezvous periods to preserve

network connectivity. This technique was modelled, which showed that there is an

Li-Wen Yip School of Engineering, James Cook University 93

Chapter 6: Summary Remote Ad Hoc Sensor Networks

optimum sleep interval for a given network density and traffic rate, thus adaptive

techniques are used to dynamically optimise the sleep interval for the anticipated

traffic level. The protocol was successfully implemented on the microcontroller

hardware platform, and its operation was verified. Unfortunately, one of the more

advanced adaptive techniques relied on having a network layer present, and thus could

not be tested.

Li-Wen Yip School of Engineering, James Cook University 94

Chapter 7: Continuations and Extensions Remote Ad Hoc Sensor Networks

Chapter 7

CONTINUATIONS AND EXTENSIONS

7.1 SOFTWARE SIMULATION

The power saving protocol developed in this thesis has been implemented and tested

on the microcontroller hardware, and sufficient results have been obtained to conclude

that the protocol is capable of providing significant power savings. However, there are

no results which quantify the power savings for realistic network scenarios. Similarly,

the new dynamic addressing protocol definitely provides power savings over its

predecessors; however the exact improvement has not been quantified.

For this work to have any real credibility in the scientific community, these protocols

must be simulated to provide quantitative results. Ns-2 seems to be the de facto

standard for simulation of ad hoc networks, however experience has shown that very

little software support is available, and a lot of the documentation currently available

on the web is not fully up to date.

A more useful alternative may be to implement the protocols on Berkeley Motes and

TinyOS, as the same code can be run on the actual mote, and in a simulator. This will

also make the work more useful to Simon Willis’ ad hoc networking research project,

which is currently using Motes as the hardware platform.

Li-Wen Yip School of Engineering, James Cook University 95

Chapter 7: Continuations and Extensions Remote Ad Hoc Sensor Networks

7.2 LOCATION DISCOVERY

Because the nodes do not have MAC addresses and network addresses are

dynamically assigned, the nodes have no hard coded identification number.

Consequently, once the nodes have been deployed, the only way to tell which node is

which is with application layer support.

Other ad hoc networks face a similar problem where the nodes are not deployed to

known locations, for example if an area is blanketed with nodes for surveillance. An

obvious solution is to attach a GPS module to each node, however this is costly,

bulky, and power consuming. An alternative is to use a distributed location discovery

algorithm [43-50], which uses triangulation to calculate the relative positions of each

node, given there are three nodes whose absolute positions are known.

The triangulation algorithm typically uses the received signal strength indicator

(RSSI) as a measure of the distance between nodes. Unfortunately, in a sparse outdoor

ad hoc network, problems such as localised geography, multi-path propagation, and

weather conditions will likely make this measurement unsuitable. However, the long

distances between nodes make it viable to use propagation delay as a measure of

distance. Assuming that a 20 MHz PIC microcontroller can measure propagation

delay to a precision of 200 nanoseconds 2, distance can be calculated to a precision of

60m.

This is clearly only possible in ad hoc networks with large distances between nodes,

thus it is a unique possibility for this project, and should be investigated further in a

subsequent thesis.

2 A 20 MHz PIC microcontroller executes instructions at 5 MHz, or 200 ns per instruction.

Li-Wen Yip School of Engineering, James Cook University 96

References Remote Ad Hoc Sensor Networks

REFERENCES

[1] N. Sim, "Ad Hoc Sensor Network For Reef Monitoring System."
Undergraduate Thesis, School of Engineering, James Cook University,
Townsville, October 2003, pp. 116.

[2] S. Sloots, "Ad Hoc Radio Networks." Undergraduate Thesis, School of
Engineering, James Cook University, Townsville, October 2004, pp. 216.

[3] L. M. Feeney and M. Nilsson, "Investigating the Energy Consumption of a
Wireless Network Interface in an Ad Hoc Networking Environment," in Proc.
IEEE INFOCOM, April 2001, pp. 1548-1557.

[4] Data Sheet: X2010 High Integrity FM Transceiver: MK Radios, Revision 4.

[5] R. Zheng, J. C. Hou, and L. Sha, "Asynchronous wakeup for ad hoc networks
," in Proceedings of the 4th ACM international symposium on Mobile ad hoc
networking \& computing Annapolis, Maryland, USA ACM Press, 2003 pp.
35-45.

[6] T. D. Todd and M. Nosovic, "Low Power Rendezvous and RFID Wakeup for
Embedded Wireless Networks," presented at 15th Annual IEEE Computer
Communications Workshop (CCW 2000), Captiva Island, Florida, October
2000.

[7] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A.
Chandrakasan, "Physical layer driven protocol and algorithm design for
energy-efficient wireless sensor networks," in Proceedings of the 7th annual
international conference on Mobile computing and networking Rome, Italy
ACM Press, 2001 pp. 272-287.

[8] "IEEE Computer Society LAN MAN Standards Committee, IEEE 802.11
Standard: Wireless LAN Medium Access Control and Physical Layer
Specifications," Aug. 1999.

[9] L. M. Feeney, "A QoS Aware Power Save Protocol for Wireless Ad Hoc
Networks," in First Mediterranean Workshop on Ad Hoc Networks(Med-Hoc
Net 2002). Sardenga, Italy, September 2002.

[10] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: an energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless
networks," Wirel. Netw. , vol. 8 pp. 481-494 2002.

Li-Wen Yip School of Engineering, James Cook University 97

References Remote Ad Hoc Sensor Networks

[11] Y. Xu, J. Heidemann, and D. Estrin, "Adaptive Energy-Conserving Routing
for Multihop Ad Hoc Networks," USC/Information Sciences Institute 527,
October 2000.

[12] J. Polastre, J. Hill, and D. Culler, "Versatile low power media access for
wireless sensor networks," in Proceedings of the 2nd international conference
on Embedded networked sensor systems Baltimore, MD, USA ACM Press,
2004 pp. 95-107.

[13] A. El-Hoiydi, "Aloha with preamble sampling for sporadic traffic in ad hoc
wireless sensor networks," P. o. I. I. C. o. Communcations, Ed., April 2002.

[14] A. El-Hoiydi, J.-D. Decotignie, C. Enz, and E. L. Roux, "wiseMAC, an ultra
low power MAC protocol for the wiseNET wireless sensor network," in
Proceedings of the 1st international conference on Embedded networked
sensor systems Los Angeles, California, USA ACM Press, 2003 pp. 302-303.

[15] J. L. Hill and D. E. Culler, "Mica: A Wireless Platform for Deeply Embedded
Networks," IEEE Micro vol. 22 pp. 12-24 2002.

[16] N. Abramson, "The Aloha System - Another Alternative for Computer
Communications," in AFIPS Conference Proceedings, vol. 36, 1970, pp. 295-
298.

[17] Y. Sun and E. M. Belding-Royer, "A Study of Dynamic Addressing
Techniques in Mobile Ad hoc Networks," Wireless Communications and
Mobile Computing, vol. 4, pp. 315-329, 2004.

[18] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, "Protocols for self-
organization of a wireless sensor network," IEEE Personal Comm. Magazine,
vol. 7, pp. 16 - 27, 2000.

[19] G. J. Pottie and W. J. Kaiser, "Wireless integrated network sensors," Commun.
ACM vol. 43 pp. 51-58 2000.

[20] J. Boleng, "Efficient network layer addressing for mobile ad hoc networks,"
The Colorado School of Mines, Technical Report MCS-00-09, June 2000.

[21] S. Cheshire, B. Aboba, and E. Guttman, "Dynamic Configuration of IPv4
Link-Local Addresses." IETF Internet Draft,
http://www.ietf.org/rfc/rfc3927.txt, March 2005.

[22] C. E. Perkins, J. T. Malinen, R. Wakikawa, E. M. Royer, and Y. Sun, "Ad Hoc
Address Autoconfiguration." IETF Internet Draft, draft-ietf-manet-autoconf-
01.txt (Work In Progress), November 2001.

[23] A. P. Tayal and L. M. Patnaik, "An address assignment for the automatic
configuration of mobile ad hoc networks," Personal Ubiquitous Comput. , vol.
8 pp. 47-54 2004.

Li-Wen Yip School of Engineering, James Cook University 98

http://www.ietf.org/rfc/rfc3927.txt

References Remote Ad Hoc Sensor Networks

[24] S. Nesargi and R. Prakash, "MANETconf: Configuration of Hosts in a Mobile
Ad Hoc Network," in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM). New York, NY, June 2002.

[25] M. D. Yarvis, W. S. Conner, L. Krishnamurthy, J. Chhabra, B. Elliott, and A.
Mainwaring, "Real-World Experiences with an Interactive Ad Hoc Sensor
Network," in Proceedings of the International Workshop on Ad Hoc
Networking (IWAHN 2002). Vancouver, British Columbia, Canada, 2002.

[26] N. H. Vaidya, "Weak duplicate address detection in mobile ad hoc networks,"
in Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing. Lausanne, Switzerland: ACM Press, June 2002, pp.
206-216.

[27] Y. Sun and E. M. Belding-Royer, "Dynamic Address Configuration in Mobile
Ad hoc Networks," University of California, Santa Barbara, UCSB Technical
Report 2003-11 March 2003.

[28] R. Droms, "Dynamic Host Configuration Protocol." IETF Internet Draft,
http://www.ietf.org/rfc/rfc2131.txt, March 1997.

[29] S. Toner and D. O'Mahony, "Self-Organising Node Address Management in
Ad Hoc Networks," in Personal Wireless Communications, IFIP-TC6 8th
International Conference (PWC 2003) Proceedings. Venice, Italy, 2003, pp.
476-483.

[30] P. Patchipulusu, "Dynamic Address Allocation Protocols for Mobile Ad Hoc
Networks." Masters Thesis, Department of Computer Science: Texas A&M
University, August 2001.

[31] Z. Hu and B. Li, "ZAL: Zero-Maintenance Address Allocation in Mobile
Wireless Ad Hoc Networks," in Proceedings of the 25th International
Conference on Distributed Computing Systems (ICDCS 2005). Columbia,
Ohio, 2005.

[32] Data Sheet: Miniature Signal Relay ED2/EF2 Series: NEC / TOKIN, 2004.

[33] Data Sheet: ER400TRS "Easy Radio" Transceiever Module. Low Power Radio
Solutions, 2004.

[34] Data Sheet: ADG918 - Wideband, 43 dB Isolation @ 1 GHz, CMOS 1.65 V to
2.75 V, 2:1 Mux/SPDT Switches: Analog Devices, Revision A.

[35] Data Sheet: DS1305 Serial Alarm Real-Time Clock: Dallas Semiconductor,
December 2002.

[36] Wikipedia, "OSI Model," http://en.wikipedia.org/wiki/OSI_model, Accessed
23 September 2005.

[37] MPASM User's Guide with MPLINK and MPLIB: Microchip Technology,
1999.

Li-Wen Yip School of Engineering, James Cook University 99

http://www.ietf.org/rfc/rfc2131.txt
http://en.wikipedia.org/wiki/OSI_model

References Remote Ad Hoc Sensor Networks

[38] Data Sheet: AD8369 - 600 MHz, 45 dB Digitally Controlled Variable Gain
Amplifier: Analog Devices, Revision 0.

[39] Data Sheet:PIC18CXX2 High Performance Microcontroller with 10-bit A/D:
Microchip, 2001.

[40] "The Network Simulator - ns-2," http://www.isi.edu/nsnam/ns/, Accessed 22
September 2005.

[41] "GloMoSim - Global Mobile Information Systems Simulation Library,"
http://pcl.cs.ucla.edu/projects/glomosim/, Accessed 22 September 2005.

[42] "The Rice University Monarch Project," http://www.monarch.cs.rice.edu/,
Accessed 22 September 2005.

[43] P. Biswas and Y. Ye, "Semidefinite programming for ad hoc wireless sensor
network localization," in Proceedings of the third international symposium on
Information processing in sensor networks Berkeley, California, USA ACM
Press, 2004 pp. 46-54.

[44] N. Bulusu, J. Heidemann, and D. Estrin, "GPS-less low cost outdoor
localization for very small devices," IEEE Personal Communications
Magazine, vol. 7, pp. 28-34, 2000.

[45] J. Hightower and G. Borriello, "Location Systems for Ubiquitous Computing,"
Computer vol. 34 pp. 57-66 2001.

[46] S. Meguerdichian, S. Slijepcevic, V. Karayan, and M. Potkonjak, "Localized
algorithms in wireless ad-hoc networks: location discovery and sensor
exposure," in MOBIHOC 2001, 2001, pp. 106-116.

[47] A. Nasipuri and K. Li, "A directionality based location discovery scheme for
wireless sensor networks," in Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications. Atlanta, Georgia,
USA: ACM Press, 2002, pp. 105-111.

[48] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket location-
support system," in Proceedings of the 6th annual international conference on
Mobile computing and networking Boston, Massachusetts, United States ACM
Press, 2000 pp. 32-43.

[49] C. Savarese, J. M. Rabaey, and J. Beutel, "Locationing in distributed ad hoc
wireless sensor networks," in Proc. 2001 Int'l Conf. Acoustics, Speech, and
Signal Processing (ICASSP 2001): IEEE, Piscataway, NJ, May 2001.

[50] A. Savvides, C.-C. Han, and M. B. Strivastava, "Dynamic fine-grained
localization in Ad-Hoc networks of sensors," in Proceedings of the 7th annual
international conference on Mobile computing and networking Rome, Italy
ACM Press, 2001 pp. 166-179.

Li-Wen Yip School of Engineering, James Cook University 100

http://www.isi.edu/nsnam/ns/
http://pcl.cs.ucla.edu/projects/glomosim/
http://www.monarch.cs.rice.edu/

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Appendix A

SOFTWARE FLOW CHARTS

A.1 ENCODING AND DECODING

 Figure A.1 – Frame Encoder

Li-Wen Yip School of Engineering, James Cook University 101

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.2 - Manchester Encoder

Li-Wen Yip School of Engineering, James Cook University 102

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.3 - Frame Decoder

Li-Wen Yip School of Engineering, James Cook University 103

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.4 - Manchester Decoder

Li-Wen Yip School of Engineering, James Cook University 104

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.5 - High Priority Interrupt Service Routine

Li-Wen Yip School of Engineering, James Cook University 105

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

A.2 ADDRESS ALLOCATION

Figure A.6 - Node Startup Event

Li-Wen Yip School of Engineering, James Cook University 106

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.7 - Initialisation Timeout Event

Li-Wen Yip School of Engineering, James Cook University 107

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.8 - AREP Message Received Event

Li-Wen Yip School of Engineering, James Cook University 108

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.9 - NREP Message Received Event

Li-Wen Yip School of Engineering, James Cook University 109

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.10 - AREQ Message Received Event

Li-Wen Yip School of Engineering, James Cook University 110

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.11 - Allocation Timeout Event

Li-Wen Yip School of Engineering, James Cook University 111

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.12 - AACK Message Received Event

Li-Wen Yip School of Engineering, James Cook University 112

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.13 - ASRCH Message Received Event

Li-Wen Yip School of Engineering, James Cook University 113

Appendix A: Encoding and Decoding Remote Ad Hoc Sensor Networks

Figure A.14 - AREJ Message Received Event

Li-Wen Yip School of Engineering, James Cook University 114

Appendix B: Schematic Diagrams Remote Ad Hoc Sensor Networks

Appendix B

SCHEMATIC DIAGRAMS

Li-Wen Yip School of Engineering, James Cook University 115

Appendix B: Schematic Diagrams Remote Ad Hoc Sensor Networks

Li-Wen Yip School of Engineering, James Cook University 116

1
2

X
TA

L
4M

H
z Y
1

V
D

D

V
CC

0.
1u

FC7

V
D

D

SW
-P

B
RS

T

IN
1

2

O
U

T
3

G
N

D

LM
78

05

U
8 IN

1
2

O
U

T
3

G
N

D

LM
78

05

U
9

V
CC

V
D

D

22
uF

Ca
p

C1

22
uF

Ca
p

C2

22
uF

Ca
p

C4

22
uF

Ca
p

C5

5KR4
1N

91
4

D
1

C1
+

1
V

D
D

2

C1
-

3

C2
+

4

C2
-

5

V
EE

6

T2
O

U
T

7

R2
IN

8
R2

O
U

T
9

T2
IN

10
T1

IN
11

R1
O

U
T

12
R1

IN
13

T1
O

U
T

14

G
N

D
15

V
CC

16

M
A

X
23

2E
PE

U
4

V
D

D

1 2 3 4 56 7 8 9

11 10

D
 C

on
ne

ct
or

 9

JP
8

0.
1u

F
Ca

p
C3 0.

1u
F

Ca
p

C6
0.

1u
F

C1
0

1 2 3 4

H
ea

de
r 4

JP
1

0.
1u

F
- C

er
am

ic

C1
6

0.
1u

F
C1

8
0.

1u
F

C1
7

1KR6

RA
0/

A
N

0
3

RA
1/

A
N

1
4

RA
2/

A
N

2/
V

RE
F-

5

RA
3/

A
N

3/
V

RE
F+

6

RA
4/

T0
CK

I
7

RA
5/

SS
/A

N
4/

LV
D

IN
8

RB
0/

IN
T

36

RB
1/

IN
T1

37

RB
2/

IN
T2

38

RB
3/

CC
P2

*
39

RB
4

41

RB
5

42

RB
6

43

RB
7

44

RC
0/

T1
O

SI
/T

1C
K

I
16

RC
1/

T1
O

SI
/C

CP
2

18

RC
2/

CC
P1

19

RC
3/

SC
K

/S
CL

20

RC
4/

SD
I/S

D
A

25

RC
5/

SD
O

26

RC
6/

TX
/C

K
27

RC
7/

RX
/D

T
29

RD
0/

PS
P0

21

RD
1/

PS
P1

22

RD
2/

PS
P2

23

RD
3/

PS
P3

24

RD
4/

PS
P4

30

RD
5/

PS
P5

31

RD
6/

PS
P6

32

RD
7/

PS
P7

33

RE
0/

RD
/A

N
5

9

RE
1/

W
R/

A
N

6
10

RE
2/

CS
/A

N
7

11
V

SS
13

V
SS

34

M
CL

R/
V

PP
2

O
SC

1/
CL

K
I

14

O
SC

2/
CL

K
O

15

V
D

D
12

V
D

D
35

PI
C1

8C
45

2_
PL

CC
PI

C1
8C

45
2

U
1

1KR5

RF
G

N
D

V
D

D

RxLE
D

1
TxLE

D
2

IN
LO

1

CO
M

M
2

BI
T0

3

BI
T1

4

BI
T2

5

BI
T3

6

D
EN

B
7

O
PL

O
8

IN
H

I
16

CO
M

M
15

PW
U

P
14

V
PO

S
13

SE
N

B
12

FI
LT

11

CM
D

C
10

O
PH

I
9

A
D

83
69

U
5

RF
G

N
D

CS
1

SO
2

W
P

3

V
ss

4
SI

5
SC

K
6

H
O

LD
7

V
dd

FM
25

64
0-

S

U
2

8

V
CC

V
D

D

1 2

X
TA

L
32

.7
68

kH
z

Y
2

RF
G

N
D

Tx
E

JP
5

Rx
E

JP
6

Rx
D

JP
3

Tx
D

JP
4

V
CC

2
1

V
BA

T
2

X
1

3

X
2

4

N
C

5

IN
T0

6

IN
T1

7

G
N

D
8

SE
RM

O
D

E
9

CE
10

SC
LK

11
SD

I
12

SD
O

13
V

CC
IF

14
PF

15
V

CC
1

16

D
S1

30
6

U
3

V
RE

FL
SC

LK
M

IS
O

M
O

SI

B0 B1 B2 B3 D
EN

B
PW

U
P

W
P

H
O

LD

B0 B1 B2 B3 D
EN

B

Rx
D

_2

Rx
EN

_2

Tx
D

_2

M
CL

R

RS
SI

_2

Tx
RF

O
U

T

PW
U

P

SC
LK

SC
LK

M
IS

O

M
IS

O

M
O

SI

M
O

SI

RT
C_

CS
FR

A
M

_C
S

FR
A

M
_C

S

RT
C_

CS

22
pF

Ca
p

C8

22
pF

C9

O
SC

2
O

SC
1

T1
O

U
T

R1
IN

C1
+

C1
-

C2
+

C2
-

1u
F

C1
3

1u
F

C1
4

1u
F

C1
2

1u
F

C1
1

1u
F

C1
5

SU
PP

LY

0R1 0R30R2

0V

RF
G

N
D

V
CC

TP
3

0VTP
2

+VTP
1

V
D

D

TP
4

RS
SI

TP
5

RF
 G

N
D

1
A

N
T

2
RF

 G
N

D
3

N
C

4
N

C
5

N
C

6
N

C
7

RS
SI

8
G

N
D

9
G

N
D

10

CD
11

Rx
D

12

A
F

13

Tx
D

14

Tx
 E

N
15

Rx
 E

N
16

V
CC

17

G
N

D
18

X
20

10

U
7

T1
IN

R1
O

U
T

T1
IN

R1
O

U
T

Rx
D

Tx
EN

Tx
D

Rx
EN

CD

TP
6

V
CC

V
CC

1
CT

RL
2

G
N

D
3

RF
C

4
RF

2
5

G
N

D
6

G
N

D
7

RF
1

8

A
D

G
91

8

U
6

V
CC

IN
T1CD

_2

A
N

TE
N

N
A

V
G

A
_O

U
T

X
20

10
_I

N

BC
54

8
Q

1

2.
6V

V
RE

FH

3.
3V

Tx
EN

21
P1

2.
6V

TP
7

1KR9
RS

T

PW
R

JP
7

CP
U

PW
R

Rx
D

Tx
D

Tx
EN

_2
Rx

EN
_2

Tx
EN

_2
Rx

EN
_2

Tx
EN

Tx
D

Rx
D

FR
A

M
_C

S

RT
C_

CS

RT
C_

CS
FR

A
M

_C
S

Rx
EN

_2
Tx

EN
_2

Rx
D

_2

Tx
D

_2

Tx
EN

_2

1KR7
1KR8

ACT
LED3

ACT
LED4

Rx
A

CT
Tx

A
CT

234 156

43
20

2-
61

01

J1
0

M
CL

R
V

D
D

G
N

D

Tx
A

CT
Rx

A
CT

1KR1
2 PWR

LED5

20
k

RP
ot

1
R1

3
V

D
D

V
D

D

CD
_2

1KR1
0

0.
1u

F
Ca

p
C2

0

1KR1
1

0.
1u

F
Ca

p
C1

9

RS
SI

CD

Figure B.1 - Node Rev 3 Schematic Diagram

Appendix C: Raw Data Remote Ad Hoc Sensor Networks

Appendix C

RAW DATA

Table C.1 - X2010 Transceiver Power Consumption vs Duty Cycle

Duty Cycle Toff Current Power

1% 990.0 ms 0.08 mA 0.40 mW

2% 490.0 ms 0.14 mA 0.70 mW

3% 323.3 ms 0.22 mA 1.10 mW

4% 240.0 ms 0.27 mA 1.35 mW

5% 190.0 ms 0.34 mA 1.70 mW

6% 156.7 ms 0.40 mA 2.00 mW

7% 132.9 ms 0.47 mA 2.35 mW

8% 115.0 ms 0.53 mA 2.65 mW

9% 101.1 ms 0.59 mA 2.95 mW

10% 90.0 ms 0.66 mA 3.30 mW

15% 56.7 ms 0.94 mA 4.70 mW

20% 40.0 ms 1.24 mA 6.20 mW

25% 30.0 ms 1.51 mA 7.55 mW

30% 23.3 ms 1.80 mA 9.00 mW

35% 18.6 ms 2.10 mA 10.50 mW

40% 15.0 ms 2.39 mA 11.95 mW

45% 12.2 ms 2.69 mA 13.45 mW

50% 10.0 ms 3.01 mA 15.05 mW

100% - 5.96 mA 29.80 mW

Li-Wen Yip School of Engineering, James Cook University 117

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

Appendix D

NS-2 SIMULATION SOFTWARE

Table D.1 - DAA.H

/*
 * File: Code for a new 'Dynamic Address Allocation' Agent Class for the ns
 * network simulator
 * Author: Li-Wen Yip (LiWen.Yip@jcu.edu.au), September 2005
 *
 */

#ifndef ns_daa_h
#define ns_daa_h

#include "agent.h"
#include "tclcl.h"
#include "packet.h"
#include "address.h"
#include "ip.h"

/*
 * Packet Types:
 * AREQ = Address Request
 * AREP = Address Reply (Offer)
 * NREP = Negative Reply
 * AACK = Address Accept
 * PACK = Proxy Address Accept
 * ASRCH = Initiate Address Search
 */

enum {AREQ, AREP, NREP, AACK, PACK, ASRCH};

/*
 * Agent States:
 * UNINIT = Uninitialised
 * INIT = Initialising
 * IDLE = Idle
 * ALLOC = Allocating addresses
 * PROXY = Acting as an allocation proxy
 */

enum {UNINIT, INIT, IDLE, ALLOC, PROXY};

/*
 * The data structure for the Dynamic Address Allocation packet header
 */
struct hdr_daa {
 short type; // The message type
 int seq; // The sequence number
 int uid; // The unique ID of the requesting node

Li-Wen Yip School of Engineering, James Cook University 118

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

 int alloc_addr[2]; // The address range being allocated
 // Header access methods
 static int offset_; // required by PacketHeaderManager
 inline static int& offset() { return offset_; }
 inline static hdr_daa* access(const Packet* p) {
 return (hdr_daa*) p->access(offset_);
 }
};

/*
 * Define the Dynamic Address Allocation agent as a subclass of "Agent"
 */
class DaaAgent : public Agent {
 public:
 // Default Constructor
 DaaAgent();
 // Execute a command
 int command(int argc, const char*const* argv);
 // Process a packet
 void recv(Packet*, Handler*);

 // Agent Variables
 int state_; // Agent State
 int uid_; // Unique identifier;
 int my_addr[2]; // My Address Space
 // Variables for Initialisation
 int areq_retry_ =; // AREQ retry counter
 static const int AREQ_LIMIT_; // AREQ retry limit
 static const int AREQ_TIMEOUT_; // AREQ retry timeout
 int arep_counter_; // AREP retry/received counter
 int nrep_counter_; // NREP received counter
 Packet* best_offer_; // Best offer
 int best_offer_size_; // Size of the best offer
 // Variables for Allocation
 int arep_retry_ // AREP retry counter
 static const int AREP_LIMIT_; // AREP retry limit
 static const int AREQ_TIMEOUT_; // AREP retry timeout;
 int alloc_addr[2]; // Allocated Address Space
 Packet* areq_src_; // the AREQ we are replying to
 // Controller functions
 void init();
 void alloc();
 void recv_areq(Packet*);
 void recv_arep(Packet*);
 void recv_nrep(Packet*);
 void recv_aack(Packet*);

 // Packet creation functions
 static Packet* create_broadcast(int /*type*/, int /*seq*/);
 static Packet* create_reply(int /*type*/, Packet* /*src*/);

};

#endif

Li-Wen Yip School of Engineering, James Cook University 119

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

Table D.1 - DAA.CC
/*
 * File: Code for a new 'Dynamic Address Allocation' Agent Class for the ns
 * network simulator
 * Author: Li-Wen Yip (LiWen.Yip@jcu.edu.au), September 2005
 *
 */

#include "daa.h"

/*
 * The following two static classes link the C++ classes with corresponding Tcl classes.
 */

int hdr_daa::offset_;
static class DaaHeaderClass : public PacketHeaderClass {
public:
 DaaHeaderClass() : PacketHeaderClass("PacketHeader/Daa",
 sizeof(hdr_daa)) {
 bind_offset(&hdr_daa::offset_);
 }
} class_daahdr;

static class DaaClass : public TclClass {
public:
 DaaClass() : TclClass("Agent/Daa") {}
 TclObject* create(int, const char*const*) {
 return (new DaaAgent());
 }
} class_daa;

/*
 * The constructor for the class 'DaaAgent'.
 * It binds the variables which have to be accessed both in Tcl and C++.
 */
DaaAgent::DaaAgent() : Agent(PT_DAA)
{
 bind("packetSize_", &size_);
}

/*
 * The function 'command()' is called when a
 * Tcl command for the class 'DaaAgent' is executed.
 */
int DaaAgent::command(int argc, const char*const* argv)
{
 if (argc == 2) {
 if (strcmp(argv[1], "init") == 0) {
 // Run the initialisation procedure
 state_ = INIT;
 my_addr[0] = 0;
 my_addr[1] = 0;
 areq_retry_ = 0;
 arep_counter_ = 0;
 nrep_counter_ = 0;
 best_offer_ = NULL;
 init();
 return(TCL_OK);
 }

Li-Wen Yip School of Engineering, James Cook University 120

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

 }
 // If the command hasn't been processed by DaaAgent()::command,
 // call the command() function for the base class
 return (Agent::command(argc, argv));
}

void DaaAgent::recv(Packet* pkt, Handler*)
{
 // Access the IP header for the received packet:
 hdr_ip* hdrip = hdr_ip::access(pkt);
 // Access the DAA header for the received packet:
 hdr_daa* hdr = hdr_daa::access(pkt);

 // Check the packet type and pass it to the appropriate function.
 if (hdr->type == AREQ) recv_areq(pkt);
 else if (hdr->type == AREP) recv_arep(pkt);
 else if (hdr->type == NREP) recv_nrep(pkt);
 else if (hdr->type == AACK) recv_aack(pkt);
// else if (hdr->type == PACK) recv_pack(pkt);
// else if (hdr->type == ASRCH) recv_asrch(pkt);
 // Discard the packet once it's been processed
 Packet::free(pkt);
}

//
// CONTROLLER FUNCTIONS
//
//
// Controls the initialisation procedure
//
void DaaAgent::init()
{
 // If we aren't in the INIT state, then bugger off
 if (state_ != INIT) return;

 // Check if we have received any replies.
 // If we have, then accept the best offer and enter the IDLE state.
 if (arep_counter_ > 0)
 {
 // Create a reply to the best offer and send it
 Packet* reply = create_reply(AACK, best_offer_);
 send(reply, 0);

 // Take posession of the offered addresses
 hdr_daa* hdr = hdr_daa::access(best_offer_);
 my_addr[0] = hdr->alloc_addr[0];
 my_addr[1] = hdr->alloc_addr[1];

 // Dispose of the packet
 Packet::free(best_offer_);

 // Enter the idle state
 state_ = IDLE;
 return;
 }

 // We haven't received any replies, so check how many times we have broadcast AREQ.
 // If it is less than the limit, (re)broadcast the AREP message, schedule a retry.
 else if (areq_retry_ <= AREQ_LIMIT_)
 {
 // Send an AREQ broadcast packet, and include a sequence number
 Packet* request = create_broadcast(AREQ, areq_retry_++);
 send(request, 0);

 // Schedule a timeout
 // ### TO DO ###
 return;

Li-Wen Yip School of Engineering, James Cook University 121

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

 }

 // We have exceeded the retry limit, so assume we are not in range of an
 // existing network and take posession of the entire address space.
 else
 {
 // Take posession of the entire address space
 my_addr[0] = 1;
 my_addr[1] = 254;

 // Enter the idle state
 state_ = IDLE;
 return;
 }

}

//
// Controls the allocation procedure
//
void DaaAgent::alloc()
{
 // If we aren't in the ALLOC state, bugger off.
 if (state_ != ALLOC) return;

 // If we are still in the ALLOC state then we haven't had a reply.
 // If we haven't reached the retry limit, (re)transmit an AREP message.
 else if (arep_retry_ <= AREP_LIMIT_)
 {
 // Send an AREP reply to the AREQ source packet
 Packet* reply = create_reply(AREP, areq_src_);
 send(reply, 0);

 // Increase the retry counter
 arep_retry_++;

 // Schedule a timeout
 // ## TO DO ##
 }

 // If we have reached the retry limit, give up and go back to the IDLE state.
 else
 {
 Packet::free(areq_src_);
 state_ = IDLE;
 }

}

//
// PACKET RECEIVING FUNCTIONS
//
void DaaAgent::recv_areq(Packet* pkt)
{
 // If we are not in the IDLE state, discard the packet
 if (state_ != IDLE)
 {
 Packet::free(pkt);
 return;
 }

 // Check if we have any available addresses
 else if (my_addr[1] > my_addr[0])
 {
 // We have available addresses: allocate the upper half.
 alloc_addr[1] = my_addr[1];
 alloc_addr[0] = (my_addr[0] + my_addr[1]) / 2;

Li-Wen Yip School of Engineering, James Cook University 122

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

 // Start the allocation procedure
 arep_retry_ = 0; // Reset the retry counter
 areq_src_ = pkt; // Save the AREQ packet
 alloc();
 return;
 }

 // We don't have available addresses, if this is only the first request then
 // discard the packet.
 else if (hdr_daa::access(pkt)->seq == 0)
 {
 Packet::free(pkt);
 }

 // If this is not the first request, then send a negative reply and go into
 // the proxy state.
 else
 {

 // Send the NREP
 Packet* reply = create_reply(NREP, pkt);
 send(reply, 0);

 // Enter the proxy state
 Packet::free(pkt);

 return;
 }
}

// Process an AREP packet
void DaaAgent::recv_arep(Packet* pkt)
{
 // If we are not in initialisation mode, discard the packet.
 if (state_ != INIT)
 {
 Packet::free(pkt);
 }

 // If the uid doesn't match, discard the packet.
 if (hdr_daa::access(pkt)->uid != uid)
 {
 Packet:free(pkt);
 }

 // If it is better than our previous best offer, discard the
 // previous best offer and save the new one
 else
 {
 arep_counter_++;
 hdr_daa* hdr = hdr_daa::access(pkt);
 int new_offer_size = hdr->alloc_addr[1] - hdr->alloc_addr[0];
 if (new_offer_size > best_offer_size_ || best_offer_ == NULL)
 {
 Packet::free(best_offer_);
 best_offer_ = pkt;
 best_offer_size_ = new_offer_size;
 }
 else
 {
 Packet::free(pkt);
 }
 return;
 }

}

Li-Wen Yip School of Engineering, James Cook University 123

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

// Process an NREP packet
void DaaAgent::recv_nrep(Packet* pkt)
{
 // Discard if we are not in initialisation mode.
 if (state_ != INIT)
 {
 Packet::free(pkt);
 }
 else
 {
 nrep_counter_++;
 // save the address so we can track which addresses are in use.
 // ## TO DO ##
 Packet::free(pkt);
 }
}

// Process an AACK packet
void DaaAgent::recv_aack(Packet* pkt)
{
 // Discard if we are not in allocation mode.
 if (state_ != ALLLOC)
 {
 Packet::free(pkt);
 }
 else
 {
 // Check the UID on the packet:
 hdr_daa* hdr = hdr_daa::access(pkt);
 if (hdr->uid ==
 }
}

//
// PACKET FUNCTIONS
//
//
// Creates a new broadcast with the specified type and sequence number.
//
Packet* DaaAgent::create_broadcast(int type, int seq)
{
 // Create a new packet
 Packet* pkt = allocpkt();

 // Populate the header with type, sequence number, and UID
 hdr_daa* hdr = hdr_daa::access(pkt);
 hdr->type = type;
 hdr->seq = seq;
 hdr->uid = uid_;

 // Set the destination address to broadcast in the IP header
 hdr_ip* iphdr = hdr_ip::access(pkt);
 iphdr->daddr() = IP_BROADCAST;
 iphdr->dport() = iphdr->sport();

 // Give it back
 return pkt;
}

//
// Creates a reply to the specified packet of the specified type
//
Packet* DaaAgent:: create_reply(int type, Packet* src)
{
 // Create a new packet

Li-Wen Yip School of Engineering, James Cook University 124

Appendix D: NS-2 Software Listing Remote Ad Hoc Sensor Networks

 Packet* pkt = allocpkt();

 // Copy the UID from the old packet into the new packet, and set the type
 hdr_daa* dest_hdr = hdr_daa::access(pkt);
 hdr_daa* src_hdr = hdr_daa::access(src);
 dest_hdr->uid = src_hdr->uid;
 dest_hdr->type = type;

 // Copy saddr from the old packet into daddr of the new packet
 hdr_ip* dest_iphdr = hdr_ip::access(pkt);
 hdr_ip* src_iphdr = hdr_ip::access(src);
 dest_iphdr->daddr() = src_iphdr->saddr();
 dest_iphdr->dport() = src_iphdr->sport();

 // Give it back
 return pkt;
}

Li-Wen Yip School of Engineering, James Cook University 125

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Appendix E

MICROCONTROLLER SOFTWARE LISTING

E.1 HEADER FILES

;***
; Master Header File
; Version 1.00
; 16/09/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
 LIST P=18C452, F=INHX32 ; directive to define processor and file format
 #include <P18C452.INC> ; processor specific variable definitions
 #include "macrolib.inc" ; common macros
 #include "pinconnections.inc" ; Pin connections
 #include "swstack.inc" ; Software Stack

Li-Wen Yip School of Engineering, James Cook University 126

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.1 - MACROLIB.INC

;***
; Macro Library
; Version 1.00
; 16/09/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;***
; Macro: SERVICE_IRP
;
; Description: Service an interrupt.
; MUST BE CALLED FROM WITHIN A SUBROUTINE.
;
; If the flag was set, it clears it.
; If the flag wasn't set, or the interrupt wasn't enabled,
; it returns from the subroutine.
; Regs Used:
;***
SERVICE_IRP macro int_flag_reg, int_flag, int_en_reg, int_en_flag

; Check the interrupt enable flag.
 btfss int_en_reg, int_en_flag ; Was the interrupt enabled?
 return ; NO - exit the routine.
; Check the interrupt flag.
 btfss int_flag_reg, int_flag ; Did this device's interrupt event occur?
 return ; NO - return.
 bcf int_flag_reg, int_flag ; YES - clear the interrupt flag.

 endm

;***
; Macro: ADDLF16
;
; Description: Add a 16 bit literal to a 16 bit field
; Regs Used: WREG
;***
ADDLF16 macro k, d
 movlw low k ; load up the low byte of the literal
 addwf d ; add it to the low byte of the destination
 movlw high k ; load up the high byte of the literal
 addwfc d + 1 ; add it and the carry bit to the high byte of the destination
 endm

;***
; Macro: SUBLF16
;
; Description: Subtract a 16 bit literal from a 16 bit field
; Regs Used: WREG
;***
SUBLF16 macro k, d
 bsf STATUS, C ; Make sure the low byte subtraction doesnt use the borrow bit
 movlw low k ; load up the low byte of the literal
 subwf d, f ; subtract it from the low byte of the destination
 movlw high k ; load up the high byte of the literal
 subwfb d + 1, f ; subtract it and the borrow bit from the high byte of the dest
 endm

Table E.2 - PINCONNECTIONS.INC

;***

Li-Wen Yip School of Engineering, James Cook University 127

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; Pin Connections Header File
;
; Version 1.00
; 14/08/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
; To get to the TRIS Register, add 0x12.
 #define TRIS 0x12
; To get to the LAT Register, add 0x09
 #define LAT 0x09

; ---
; Transceiver Connections
; ---
; Inputs
 #define RSSI PORTA, AN1 ; Pin 3
 #define NCD PORTB, RB0 ; Pin 36
 #define NCD2 PORTA, RA0 ; Pin 4
 #define RXD PORTC, CCP1 ; Pin 19
; Outputs
 #define TXD PORTC, CCP2 ; Pin 18
 #define NTXEN PORTB, RB5 ; Pin 41
 #define NRXEN PORTB, RB4 ; Pin 42
 #define TXLED PORTB, RB7 ; Pin 44
 #define RXLED PORTB, RB6 ; Pin 43
CONFIG_TRANSCIEVER_PINS macro
 ; Inputs
 bsf TRIS + RSSI
 bsf TRIS + NCD
 bsf TRIS + NCD2
 bsf TRIS + RXD
 bcf TRIS + TXD
 ; Set Outputs' Initial State
 bsf LAT + NTXEN ; High
 bsf LAT + NRXEN ; High
 bcf LAT + TXLED ; Low
 bcf LAT + RXLED ; Low
 ; Outputs
 bcf TRIS + NTXEN
 bcf TRIS + NRXEN
 bcf TRIS + TXLED
 bcf TRIS + RXLED
 endm

; ---
; VGA Connections
; ---
; Inputs
 #define B0 PORTD, RD0 ; Pin 21
 #define B1 PORTD, RD1 ; Pin 22
 #define B2 PORTD, RD2 ; Pin 23
 #define B3 PORTD, RD3 ; Pin 24
 #define PWUP PORTD, RD4 ; Pin 30
 #define DENB PORTD, RD5 ; Pin 31
CONFIG_VGA_PINS macro
 ; Inputs
 bsf TRIS + B0
 bsf TRIS + B1
 bsf TRIS + B2
 bsf TRIS + B3
 bsf TRIS + PWUP

Li-Wen Yip School of Engineering, James Cook University 128

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 bsf TRIS + DENB
 endm

; ---
; SPI Connections
; ---
CONFIG_SPI_PINS macro
 ; Inputs
 bsf TRISC, SDI
 ; Outputs
 bcf TRISC, SDO
 bcf TRISC, SCK
 endm

; ---
; FRAM Connections
; ---
; Outputs
 #define FRAM_NCS PORTB, RB2 ; Pin 18
 #define NWP PORTD, RD6 ; Pin 32
 #define NHOLD PORTD, RD7 ; Pin 33
CONFIG_FRAM_PINS macro
 ; Set Outputs' Initial State
 bsf LAT + FRAM_NCS ; High
 bcf LAT + NWP ; Low
 bsf LAT + NHOLD ; High
 ; Outputs
 bcf TRIS + FRAM_NCS
 bcf TRIS + NWP
 bcf TRIS + NHOLD
 endm

; ---
; RTC Connections
; ---
; Outputs
 #define RTC_CS PORTB, RB3 ; Pin 16
CONFIG_RTC_PINS macro
 ; Inputs
 bsf TRISB, INT1 ; ALARM IRQ
 ; Set Outputs' Initial State
 bcf LAT + RTC_CS ; Low
 ; Outputs
 bcf TRIS + RTC_CS
 endm

Li-Wen Yip School of Engineering, James Cook University 129

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.3 - SWSTACK.INC

;***
; Software Stack
;
; Version 0.10
; 11/08/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;
; Description:
; Dependencies:
; Resources Used:
; Things you must do to use this module:
; What you need to understand to work with this code:
; Notes:
;***
; MACRO: SWPUSH
;
; Description: Push a file to the software stack.
; Arguments: file - The file to be pushed to the stack.
; Regs Used: FSR2 (Exclusive)
;***
SWPUSH macro file
; if file == WREG
; movwf PREINC2
; else
 movff file, PREINC2
; endif
 endm

;***
; MACRO: SWPOP
;
; Description: Pop a file from the software stack.
; Arguments: f - The file to be popped to.
; Regs Used: FSR2 (Exclusive)
;***
SWPOP macro file
; if file == WREG
; movf POSTDEC2, W
; else
 movff POSTDEC2, file
; endif
 endm

;***
; MACRO: STACKINIT
;
; Description: Initialise the software stack
; Arguments: The address of the stack
; Regs Used: FSR2 (Exclusive)
;***
STACKINIT macro addr
 lfsr 2, addr
 endm

Li-Wen Yip School of Engineering, James Cook University 130

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.4 - BUFFERS.INC

;***
; Software Buffers Header File
;
; Version 1.00
; 14/08/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
 extern buflen

;***
; MACRO: BUF_SEL
;
; Description: Select a buffer
; Arguments: addr - the address of the buffer.
; size - the size of the buffer.
; Postcond'ns: - Address of buffer has been loaded to FSR0.
; - Address of cursor and END has been loaded to FSR1.
; - Length of buffer has been loaded to buflen.
; Regs Ch'd: WREG
;***
; CURSOR(1) : END(1) : DATA(VAR) ;
; ^ FSR1 ^ FSR0
BUF_SEL macro addr, size
 lfsr 0, addr + 2 ; Load address of buffer data area to FSR0.
 lfsr 1, addr ; Load address of buffer variables to FSR1.
 movlw size - 2 ; Load the size of the buffer data area.
 movwf buflen ; Store it in buflen.
 endm

;***
; MACRO: BUF_GETCURSOR
;
; Description: Gets the cursor value of the currently selected buffer.
; Arguments: None.
; Precond'ns: A buffer has been selected with BUF_SEL
; Postcond'ns: cursor -> WREG
; Regs Used: WREG
;***
; INDF1 = cursor
BUF_GETCURSOR macro
 movf INDF1, W
 endm

;***
; MACRO: BUF_SETCURSOR
;
; Description: Sets the cursor value of the currently selected buffer.
; Arguments: Cursor value in WREG.
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns: WREG -> cursor
; Regs Used: None.
;***
; INDF1 = cursor
BUF_SETCURSOR macro
 movwf INDF1
 endm

;***
; MACRO: BUF_CLEAR
;

Li-Wen Yip School of Engineering, James Cook University 131

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; Description: Clears the currently selected buffer.
; Arguments: None.
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns: 0 -> cursor, 0 -> end.
; Regs Used: None.
;***
; POSTINC1 = cursor, POSTDEC1 = end
BUF_CLEAR macro
 clrf POSTINC1 ; 0 -> Cursor
 clrf POSTDEC1 ; 0 -> End
 endm

;***
; MACRO: BUF_MARKEND
;
; Description: Mark the current cursor position as the end of the
; currently selected buffer.
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns: - Cursor -> End
; Regs Ch'd: WREG
;***
; POSTINC1 = cursor, POSTDEC1 = end
BUF_MARKEND macro
 movf POSTINC1, W ; Cursor -> WREG
 movwf POSTDEC1 ; WREG -> End
 endm

;***
; MACRO: BUF_GETEND
;
; Description: Get the end index of the buffer (i.e. the length of the
; data contained in the buffer).
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns: End -> WREG
; Regs Ch'd: WREG
;***
; POSTINC1 = cursor, POSTDEC1 = end
BUF_GETEND macro
 movf POSTINC1, F ; Increment FSR1
 movf POSTDEC1, W ; End -> WREG
 endm

;***
; MACRO: BUF_PUT
;
; Description: Write a byte to the buffer at the current cursor location
; and increment the cursor by one.
; Arguments: Data byte in WREG.
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns: WREG -> Buffer[Cursor++]
; Regs Ch'd: WREG
;***
; INDF1 = cursor, PLUSW0 = Buffer[Cursor]
BUF_PUT macro
 movwf PREINC2 ; Push our data byte onto the stack.
 movf INDF1, W ; Load the cursor to WREG.
 movff POSTDEC2, PLUSW0 ; Pop our data byte on the buffer.
 incf INDF1 ; Increment the cursor.
 endm

;***
; MACRO: BUF_GET
;
; Description: Get a byte from the buffer at the current cursor
; location and increment the cursor by one.
; Arguments: Data byte in WREG.

Li-Wen Yip School of Engineering, James Cook University 132

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns: Buffer[Cursor++] -> WREG
; Regs Ch'd: WREG
;***
; INDF1 = cursor, PLUSW0 = Buffer[Cursor]
BUF_GET macro
 ; Read a byte from the buffer.
 movf INDF1, W ; Load the cursor to WREG.
 movf PLUSW0, W ; Read a byte from WREG.
 ; Increment the cursor.
 incf INDF1, F
 endm

;***
; MACRO: BUF_FREE
;
; Description: Calculate the amount of free space in the buffer.
; Arguments: None.
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns: buflen - end -> WREG
; Regs Ch'd: WREG
;***
BUF_FREE macro
 BUF_GETEND ; Load the end position.
 subwf buflen, W ; buflen 0 end -> WREG
 endm

;***
; MACRO: BUF_SNEOF (Skip if cursor is not at end of data)
;
; Description: Skip if cursor < end
; Arguments: None.
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns:
; Regs Ch'd: WREG.
;***
; POSTINC1 = cursor, POSTDEC1 = end
BUF_SNEOF macro
 movf POSTINC1, W ; Load the cursor to WREG.
 cpfsgt POSTDEC1 ; Skip if end > cursor.
 endm

;***
; MACRO: BUF_SNFULL (Skip if buffer is not full)
;
; Description: Skip if cursor < buflen
; Arguments: None.
; Precond'ns: A buffer has been selected with BUF_SEL.
; Postcond'ns:
; Regs Ch'd: WREG.
;***
; INDF1 = cursor
BUF_SNFULL macro
 movf INDF1, W ; Load the cursor to WREG.
 cpfsgt buflen ; Skip if buflen > cursor.
 Endm

Li-Wen Yip School of Engineering, James Cook University 133

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

E.2 MODULES

Table E.5 - MAIN.ASM

;**
; This file is a basic template for creating relocatable assembly code for *
; a PIC18C452. Copy this file into your project directory and modify or *
; add to it as needed. Create a project with MPLINK as the language tool *
; for the hex file. Add this file and the 18C452.LKR file to the project. *
; *
; The PIC18CXXX architecture allows two interrupt configurations. This *
; template code is written for priority interrupt levels and the IPEN bit *
; in the RCON register must be set to enable priority levels. If IPEN is *
; left in its default zero state, only the interrupt vector at 0x008 will *
; be used and the WREG_TEMP, BSR_TEMP and STATUS_TEMP variables will not *
; be needed. *
; *
; Refer to the MPASM User's Guide for additional information on the *
; features of the assembler and linker. *
; *
; Refer to the PIC18CXX2 Data Sheet for additional information on the *
; architecture and instruction set. *
; *
;**
; *
; Filename: Main.asm *
; Date: 25/09/2005 *
; File Version: 1.00 *
; *
; Author: Li-Wen Yip *
; Company: James Cook University *
; *
;**
; *
; Files required: P18C452.INC *
; 18C452.LKR *
; *
;**
; MASTER HEADER FILE
 #include "MasterHeader.inc"

;**
; EXTERNAL LABELS
 #include "PHY.inc"
 #include "MAC.inc"

 #include "RTC.inc"
 #include "buffers.inc" ; Labels for buffers.asm
; From <SoftwareTimers.asm>
 extern SWTIMERS_INIT, SWTIMERS_ISR

; From <SPI.asm>
 extern SPI_INIT

; From <RouteCache.asm>
 extern FRAM_INIT

;**
;Configuration bits
; The __CONFIG directive defines configuration data within the .ASM file.
; The labels following the directive are defined in the P18C452.INC file.
; The PIC18CXX2 Data Sheet explains the functions of the configuration bits.
; Change the following lines to suit your application.
; __CONFIG _CONFIG0, _CP_OFF_0
; __CONFIG _CONFIG1, _OSCS_OFF_1 & _RCIO_OSC_1

Li-Wen Yip School of Engineering, James Cook University 134

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; __CONFIG _CONFIG2, _BOR_ON_2 & _BORV_25_2 & _PWRT_OFF_2
; __CONFIG _CONFIG3, _WDT_ON_3 & _WDTPS_128_3
; __CONFIG _CONFIG5, _CCP2MX_ON_5
; __CONFIG _CONFIG6, _STVR_ON_6
;**
;Variable definitions
; These variables are only needed if low priority interrupts are used.
; More variables may be needed to store other special function registers used
; in the interrupt routines.
MAIN_UDATA UDATA

WREG_TEMP RES 1 ;variable in RAM for context saving
STATUS_TEMP RES 1 ;variable in RAM for context saving
BSR_TEMP RES 1 ;variable in RAM for context saving

 UDATA 0x500
swstack RES 64

;**
;Reset vector
; This code will start executing when a reset occurs.
RESET_VECTOR CODE 0x0000
 goto Main ;go to start of main code
;**
;High priority interrupt vector
; This code will start executing when a high priority interrupt occurs or
; when any interrupt occurs if interrupt priorities are not enabled.
HI_INT_VECTOR CODE 0x0008
 bra HighInt ;go to high priority interrupt routine
;**
;Low priority interrupt vector
; This code will start executing when a low priority interrupt occurs.
; This code can be removed if low priority interrupts are not used.
LOW_INT_VECTOR CODE 0x0018
 bra LowInt ;go to low priority interrupt routine

 CODE

;**
;High priority interrupt routine
; The high priority interrupt code is placed here.
HighInt:

; Check if CCP1 (Receive Clock) caused an interrupt.
_CCP1_ISR:
 btfss PIR1, CCP1IF ; Is the interrupt flag set?
 bra _CCP2_ISR ; NO - skip to checking CCP2.
 bcf PIR1, CCP1IF ; YES - clear it.
 btfss PIE1, CCP1IE ; Was the interrupt enabled?
 bra _CCP2_ISR ; NO - skip to checking CCP2.
 ; Let's do some decoding. Yeah Baby!
 call MANCHESTER_DECODER ; Call the manchester decoding routine. <PHY.asm>
 call FRAME_DECODER ; Call the Frame decoding routine. <MAC.asm>
 retfie FAST ; Done.
; Check if CCP2 (Transmit Clock / Receive Clock Watchdog) caused an interrupt.
_CCP2_ISR:
 btfss PIR2, CCP2IF ; Is the interrupt flag set?
 retfie FAST ; NO - return.
 bcf PIR2, CCP2IF ; YES - clear it.
 btfss PIE2, CCP2IE ; Was the interrupt enabled?
 retfie FAST ; NO - return.
 ; Check if we should run the encoder routine or the watchdog routine.
 btfss NTXEN ; Are we in transmit mode?
 bra _RUN_ENCODER ; YES
 call CLOCK_WATCHDOG ; NO - run the watchdog routine. <PHY.asm>
 call RESET_DECODER ; Notify the MAC layer clock has been lost. <MAC.asm>

Li-Wen Yip School of Engineering, James Cook University 135

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 retfie FAST ; Done.
_RUN_ENCODER:
 ; Let's do some encoding.
 call MANCHESTER_ENCODER ; Call the manchester encoding routine. <PHY.asm>
 call FRAME_ENCODER ; Call the frame encoding routine. <MAC.asm>
 retfie FAST ; Done.
;**
;Low priority interrupt routine
; The low priority interrupt code is placed here.
; This code can be removed if low priority interrupts are not used.
LowInt:
 movff STATUS, PREINC2 ; Save STATUS register
 movwf PREINC2 ; Save WREG register
 movff BSR, PREINC2 ; Save BSR register
 call SWTIMERS_ISR ; <SWTimers.asm>
 call TMR0_ISR ; <MAC.asm>
 call TRAFFIC_CONTROL ; <MAC.asm>
 call INT1_ISR ; <MAC.asm>
 movff POSTDEC2, BSR ; Restore BSR register
 movf POSTDEC2, W ; Restore WREG register
 movff POSTDEC2, STATUS ; Restore STATUS register
 retfie

;**
;Start of main program
; The main program code is placed here.
Main:

 ; Disable interrupts during initialisation
 bcf INTCON, GIEL ; disable low priority interrupt.
 bcf INTCON, GIEH ; disable high priority interrupt.
 ; Initialisation Routines
 lfsr 2, 0x500 ; Initialise the stack
 call SWTIMERS_INIT ; Initialise software timers
 call PHY_INIT ; Initialise physical layer
 call MAC_INIT ; Initialise mac layer
 call SPI_INIT ; Initialise SPI Bus
 call FRAM_INIT ; Initialise FRAM chip
 call RTC_INIT ; Initialise RTC chip
 ; Reenable Interrupts
 bsf RCON, IPEN ; enable interrupt priorities
 bsf INTCON, GIEL ; enable low priority interrupt.
 bsf INTCON, GIEH ; enable high priority interrupt.

; call RX_ENABLE
; bcf INTCON3, INT1IE
 extern MAC_TEST
 bra MAC_TEST

Loopy:
 clrwdt
 bra Loopy

;**
;End of program
 reset ; If we ever get here do a reset.
 END

Li-Wen Yip School of Engineering, James Cook University 136

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.6 - PHY.INC

;***
; Physical Layer Header File
; Version 1.00
; 16/09/2005
; Initialisation Routine
 extern PHY_INIT

; Manchester Encoding
 extern MANCHESTER_ENCODER

; Manchester Decoding
 extern MANCHESTER_DECODER, CLOCK_WATCHDOG

; Hardware Control
 extern RX_DISABLE, TX_DISABLE, RX_ENABLE, TX_ENABLE

; Variables
 extern phy_status, txbyte, rxbyte, bitcount, shiftreg_l, shiftreg_h

 #define txbyte_empty phy_status, 0 ; Set when a byte has been transmitted.
 #define rxbyte_full phy_status, 1 ; Set when a byte has arrived.
 #define clock_detect phy_status, 2 ; Set when there is a valid clock.

Table E.7 - PHY.ASM

;***
; PHYSICAL LAYER MODULE
;
; Version 1.00
; 16/09/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;
; Description:
;
; Functions:
;
; Dependencies:
;
; Resources Used:
;
; Things you must do to use this module:
;
; What you need to understand to work with this code:
;
; Notes:
;
;***
; MASTER HEADER FILE
 #include "MasterHeader.inc"

;***
; CONFIGURATION CONSTANTS
; Chip Length: The number of periods of TMR3 that equals one chip.
 #define CHIPTIME d'100' ; 100 us
; Power on Delay: The amount of time to wait between powering up the transmitter

Li-Wen Yip School of Engineering, James Cook University 137

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; hardware and starting to transmit data. Defined in periods of TMR3.
 #define TX_DELAY d'5000' ; 5 ms
;***
; CONSTANTS
; CCP Compare Modes:
CCP_IRP equ b'1010' ; Just generate an interrupt on match
CCP_RAISE equ b'1000' ; Raise the output on match
CCP_CLEAR equ b'1001' ; Clear the output on match
CCP_TOGGLE equ b'0010' ; Toggle the output on match - doesn't seem to work
; CCP Capture Modes:
CCP_FALLING equ b'0100' ; Capture every falling edge
CCP_RISING equ b'0101' ; Capture every rising edge
CCP_RISING4 equ b'0110' ; Capture every 4th rising edge
CCP_RISING16 equ b'0111' ; Capture every 16th rising edge
 #define rx_get_sample CCP1CON, 3 ; Have we been waiting to get a sample?
;**
; GLOBAL VARIABLES
.phy_global_vars udata_acs

; Status register - used to communicate state information to and from the MAC layer.
phy_status res 1
 #define txbyte_empty phy_status, 0 ; Set when a byte has been transmitted.
 #define rxbyte_full phy_status, 1 ; Set when a byte has arrived.
 #define clock_detect phy_status, 2 ; Set when there is a valid clock.
; Tx/Rx Registers - data is exchanged with the physical layer via these registers.
txbyte res 1
rxbyte res 1

; Bit counter - used to synchronise to the start of a byte.
bitcount res 1

; 16 bit shift register - directly accessed by the MAC layer to detect the SOF.
shiftreg_l res 1
shiftreg_h res 1

 global phy_status, txbyte, rxbyte, bitcount, shiftreg_l, shiftreg_h

;**
; LOCAL VARIABLES
.phy_local_vars udata_acs

phy_flags res 1
 #define tx_clock phy_flags, 0 ; Set when we are encoding a clock chip.

;**
; IMPORTED SUBROUTINES

;**
; EXPORTED SUBROUTINES
; Initialisation Routine
 global PHY_INIT

; Manchester Encoding
 global MANCHESTER_ENCODER

; Manchester Decoding
 global MANCHESTER_DECODER, CLOCK_WATCHDOG

; Harware Control
 global RX_DISABLE, TX_DISABLE, RX_ENABLE, TX_ENABLE

;**
; START OF CODE
 CODE

Li-Wen Yip School of Engineering, James Cook University 138

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

;***
; SUBROUTINE: PHY_INIT
;
; Description: Initialisation for physical layer.
; Precond'ns: -
; Postcond'ns:
; Regs Used: WREG, CCP1 Registers, CCP2 Registers, TMR3 Registers
;***
PHY_INIT:

 ; Configure Transceiver pins.
 CONFIG_TRANSCIEVER_PINS

 ; Configure TIMER3 (Chiprate Generator)
 movlw b'11000001' ; Load config byte for TIMER3.
 ; '1-------' ; Enable 16-bit Read/Write.
 ; '-1--X---' ; Use TIMER3 for both CCP modules.
 ; '--00----' ; 1:1 Prescale.
 ; '------0-' ; Use internal clock (Fosc/4)
 ; '-------1' ; Turn Timer3 on
 movwf T3CON

 ; Set up interrupts.
 bcf PIE1, CCP1IE ; Disable the CCP1 interrupt.
 bcf PIE2, CCP2IE ; Disable the CCP2 interrupt.
 bcf PIE2, TMR3IE ; Disable the TMR3 interrupt.
 bsf IPR1, CCP1IP ; CCP1 (Receive) is high priority.
 bsf IPR2, CCP2IP ; CCP2 (Transmit) is high priority.
 return

;***
; SUBROUTINE: RX_ENABLE
;
; Description: Enable the receiver.
; Precond'ns:
; Postcond'ns: - Transmitter is disabled.
; - /RXEN is activated (set low).
; - CCP1 is set to interrupt in 5ms.
; - CCP1 Interrupt is enabled (PIE1<CCP1IE> is set).
; - TMR1 Interrupt is enabled (PIE1<TMR1IE> is set).
; Regs Used:
;***
RX_ENABLE:
 call TX_DISABLE ; Disable the Transmitter.
 bcf NRXEN ; Activate /RXEN.
 ; Reset the state of the manchester decoder.
 clrf bitcount ; Reset the bit counter.
 bcf clock_detect

 ; Set CCP1 to match in about 5ms.
 ; This gives the transmitter enough time to power up.
 bcf PIE1, CCP1IE ; Disable the interrupt to stop it going off.
 movlw low TX_DELAY ; Load the low byte of 5ms.
 addwf TMR3L, W ; Add low byte of TMR3 value.
 movwf CCPR1L ; Store it in low byte of CCPR1
 movlw high TX_DELAY ; Load the high byte of 5ms.
 addwfc TMR3H, W ; Add the high byte of TMR3 value with carry.
 movwf CCPR1H ; Store it in high byte of CCPR1
 ; Enable CCP1 Interrupt.
 movlw CCP_IRP ; Set CCP1 to generate software interrupt on match.
 movwf CCP1CON
 bcf PIR1, CCP1IF ; Clear the flag so we don't get false interrupt.
 bsf PIE1, CCP1IE ; Enable the interrupt.
 ; Enable CCP2 Interrupt.
 movlw CCP_IRP ; Set CCP2 to generate software interrupt on match.
 movwf CCP2CON ; ...
 bcf PIR2, CCP2IF ; Clear the flag so we don't get false interrupt.

Li-Wen Yip School of Engineering, James Cook University 139

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 bsf PIE2, CCP2IE ; Enable the CCP2 interrupt.
 return

;***
; SUBROUTINES: TX_ENABLE
;
; Description: Enable the transmitter.
; Precond'ns:
; Postcond'ns: - Receiver is disabled.
; - /TXEN is activated (set low).
; - VGA is powered up.
; - CCP2 is set to interrupt in 5ms.
; - CCP2 Interrupt is enabled (PIE2<CCP2IE> is set).
; Regs Used:
;***
TX_ENABLE:
 ; Enable the transmitter hardware.
 call RX_DISABLE ; Disable the Receiver.
 bsf PWUP ; Power up the VGA.
 bcf NTXEN ; Activate /TXEN.
 ; Reset the state of the encoder.
 clrf phy_flags
 clrf bitcount

 ; Set CCP2 to match in about 5ms.
 ; This gives the transmitter enough time to power up.
 bcf PIE2, CCP2IE ; Disable the interrupt to stop it going off.
 movlw low TX_DELAY ; Load the low byte of 5ms.
 addwf TMR3L, W ; Add low byte of TMR3 value.
 movwf CCPR2L ; Store it in low byte of CCPR2.
 movlw high TX_DELAY ; Load the high byte of 5ms.
 addwfc TMR3H, W ; Add the high byte of TMR3 value with carry.
 movwf CCPR2H ; Store it in high byte of CCPR2.
 ; Enable CCP2 Interrupt.
 movlw CCP_TOGGLE ; Set CCP2 to toggle TxD on a match
 movwf CCP2CON ; ...
 bcf PIR2, CCP2IF ; Clear the flag so we don't get false interrupt.
 bsf PIE2, CCP2IE ; Enable the CCP2 interrupt.
 return

;***
; SUBROUTINES: RX_DISABLE
;
; Description: Disable the receiver.
; Precond'ns:
; Postcond'ns: - TMR1 Interrupt is disabled.
; - CCP1 Interrupt is disabled.
; - /TXEN is deactivated (set high).
; Regs Used:
;***
RX_DISABLE:
 bcf PIE1, CCP1IE ; Disable CCP1 Interrupt.
 bsf NRXEN ; Deactivate /RXEN.
 return

;***
; SUBROUTINES: TX_DISABLE
;
; Description: Disable the transmitter.
; Precond'ns:
; Postcond'ns: - CCP2 Interrupt is disabled.
; - VGA is powered down.
; - /TXEN is deactivated (set high).
; Regs Used:
;***
TX_DISABLE:
 bcf PIE2, CCP2IE ; Disable CCP2 Interrupt.

Li-Wen Yip School of Engineering, James Cook University 140

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 movlw CCP_IRP ; ...
 movwf CCP2CON ; ...
 bcf PWUP ; Power down the VGA.
 bsf NTXEN ; Deactivate /TXEN.
 return

;***
; SUBROUTINE: MANCHESTER_ENCODER (ISR, CCP2)
;
; Description: - Manchester encodes bytes from txbyte.
; Precond'ns: - CCP2 Interrupt must be serviced.
; Postcond'ns:
; Regs Used:
;***
MANCHESTER_ENCODER:

; ---
; DECISION: Check if we are encoding a clock chip or a data chip.
 btfsc tx_clock ; Are we encoding a clock chip?
 bra _TX_CLOCKCHIP ; Yes - encode a clock chip.
; ---
; DECISION: Check if we need to get another data byte.
 tstfsz bitcount ; Does bitcount = 0?
 bra _TX_DATACHIP ; NO - don't get another byte.
; ---
; DECISION: Check if we have another data byte to transmit.
 btfsc txbyte_empty ; Is there a transmit byte?
 bra TX_DISABLE ; NO - disable the transmitter.
; ---
; PROCESS: Fetch the next data byte.
 movff txbyte, shiftreg_l ; Fetch the next byte from the buffer.
 movlw d'08' ; Reset the bit counter.
 movwf bitcount ; ...
 bsf txbyte_empty ; Set a flag to say we are ready for the next byte.
; ---
; PROCESS: Encode a data chip on the next cycle.
_TX_DATACHIP:
 decf bitcount ; Decrement the bit counter.
 rrcf shiftreg_l ; Pop a the LSB off the end of the data byte.
 bc _DATACHIP_HIGH ; Data bit was high.
; bnc _DATACHIP_LOW ; Data bit was low.
_DATACHIP_LOW:
 btfss PORTC, CCP2 ; Is TxD also low?
 bra _TX_TOGGLE_IN_TWO ; Yes - we can skip the next cycle.
 bsf tx_clock ; NO - set the clock flag ...
 bra _TX_TOGGLE_IN_ONE ; ... and Toggle TxD in one chip period.
_DATACHIP_HIGH:
 btfsc PORTC, CCP2 ; Is TxD also high?
 bra _TX_TOGGLE_IN_TWO ; Yes - we can skip the next cycle.
 bsf tx_clock ; NO - set the clock flag ...
 bra _TX_TOGGLE_IN_ONE ; ... and Toggle TxD in one chip period.
; ---
; PROCESS: Set CCP2 (Chiprate Generator) to toggle TxD in one chip period.
_TX_TOGGLE_IN_ONE:
 movlw low CHIPTIME ; Load up the low byte of the chip time.
 addwf CCPR2L ; Add it to the low byte of CCPR2
 movlw high CHIPTIME ; Load up the high byte of the chip time.
 addwfc CCPR2H ; Add it to the high byte of CCPR2 with carry.
 return

; ---
; PROCESS: Set CCP2 (Chiprate Generator) to toggle TxD in two chip periods.
_TX_TOGGLE_IN_TWO:
 movlw low CHIPTIME*2 ; Load up the low byte of the chip time * 2.

Li-Wen Yip School of Engineering, James Cook University 141

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 addwf CCPR2L ; Add it to the low byte of CCPR2
 movlw high CHIPTIME*2 ; Load up the high byte of the chip time * 2.
 addwfc CCPR2H ; Add it to the high byte of CCPR2 with carry.
 return

; ---
; PROCESS: Encode a clock chip.
_TX_CLOCKCHIP:

 ; Clear the clock flag.
 bcf tx_clock

 ; Toggle TxD in one chip period.
 movlw low CHIPTIME ; Load up the low byte of the chip time.
 addwf CCPR2L ; Add it to the low byte of CCPR2
 movlw high CHIPTIME ; Load up the high byte of the chip time.
 addwfc CCPR2H ; Add it to the high byte of CCPR2 with carry.
 return

;***
; SUBROUTINE: MANCHESTER_DECODER (ISR, CCP1)
;
; Description: - Decodes manchester encoded bits and shifts them
; into shiftreg_h and shiftreg_l.
; Precond'ns: - CCP1 interrupt must be serviced.
; Postcond'ns:
; Regs Used:
;***
MANCHESTER_DECODER:

; ---
; DECISION: Check if CCP1 was set to capture or compare mode.
; Compare mode (CCP1CON<3> is set) - Go to the sampling routine.
; Capture mode (CCP1CON<3> is clear) - Go to the clock detect routine.
 btfsc rx_get_sample ; Were we waiting to get a sample?
 bra _SAMPLE ; YES - Take a sample.
 ;bra _CLOCK_DETECT ; NO - Synchronise to the clock edge.
; ---
; PROCESS: Sync to the manchester clock (the edges in the middle of each data bit)
; Even if the edge we just captured is not the correct clock edge, it will sort itself
; out as soon as the data bit changes.
; a) Set CCP2 (Clock Watchdog) to match in 2.2 chip periods
; b) Set CCP1 (Chiprate Generator) to match in 1.5 chip periods
_CLOCK_DETECT:

 ; a) Set CCP2 (Clock Watchdog) to match in 2.2 chip periods.
 ; If don't detect a clock edge and run this routine ever two chip periods,
 ; CCP2 will generate an interrupt, indicating we have lost the clock.
 movlw low CHIPTIME*22/10 ; Load the low byte of 2.2 chiptimes.
 addwf CCPR1L, W ; Add the low byte of the current time.
 movwf CCPR2L ; Store it to CCPR2.
 movlw high CHIPTIME*22/10 ; Load the high byte of 2.2 chiptimes.
 addwfc CCPR1H, W ; Add the high byte of the current time with carry.
 movwf CCPR2H ; Store it to CCPR2.
 ; This is done in RX_ENABLE
 movlw CCP_IRP ; Set CCP2 to generate a software interrupt on match.
 movwf CCP2CON ; ...
 bcf PIR2, CCP2IF ; Prevent a false interrupt after changing modes.
 ; b) Set CCP1 (Chiprate Generator) to match in 1.5 chip periods.
 ; CCP1 should generate an interrupt in the middle of the first chip of the
 ; next bit... the perfect place to sample.
 movlw low CHIPTIME*3/2 ; Load low byte of 1.5 chiptimes.
 addwf CCPR1L ; Add it to the low byte of CCPR1.
 movlw high CHIPTIME*3/2 ; Load the high byte of the chiptime.
 addwfc CCPR1H ; Add it to the high byte of CCPR1 with carry.
 movlw CCP_IRP ; Set CCP1 to generate a software interrupt on match.

Li-Wen Yip School of Engineering, James Cook University 142

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 movwf CCP1CON ; ...
 bcf PIR1, CCP1IF ; Prevent a false interrupt after changing modes.
 return ; Done.
; ---
; PROCESS: Take a sample and place it into the shift register.
; a) Test the value of RxD.
; High: set STATUS<C>, set CCP1 to capture the next falling edge.
; Low: clear STATUS<C>, set CCP1 to capture the next rising edge.
; b) Rotate shiftreg_h and shiftreg_l right through the carry bit.
; c) Increment the bit counter.
;
; NB - RRCF shifts the carry bit into the register -
; this is why we are writing to STATUS<C>.
; Make sure any instructions do not change STATUS<C> until the RRCF is done.
_SAMPLE:
 btfss PORTC, CCP1 ; Is the TxD high or low?
 bra _SAMPLE_LOW
_SAMPLE_HIGH:
 bsf STATUS, C ; Set the carry bit.
 movlw CCP_FALLING ; Next edge will be a falling edge.
 bra _SAMPLE_1 ; Continue.
_SAMPLE_LOW:
 bcf STATUS, C ; Clear the carry bit.
 movlw CCP_RISING ; Next edge will be a rising edge.
_SAMPLE_1:
 movwf CCP1CON ; Configure CCP1.
 bcf PIR2, CCP1IF ; Prevent a false interrupt after changing modes.
 rrcf shiftreg_h ; Right shift the carry bit into the shiftreg.
 rrcf shiftreg_l ; ...
 incf bitcount ; Increment the bit counter to say we received a bit.
; ---
; DECISION: Check if we have received 8 bits.
; YES - Reset the bit counter, copy the byte into rxbyte, and set rxbyte_full.
; NO - increment the bit counter and return.
 movlw d'07' ;
 cpfsgt bitcount ; Is bitcount >= 8?
 return ; NO - return.
 ; Process the byte we just received.
 clrf bitcount ; Clear the bit counter.
 movff shiftreg_h, rxbyte ; Copy the received byte into rxbyte.
 bsf rxbyte_full ; Set a flag to say we have received a byte.
 bsf clock_detect ; Set the clock detect flag.
 bsf RXLED
 return ; Bugga orf.

;***
; Subroutine: CLOCK_WATCHDOG (ISR, CCP2)
;
; Description: Called when CCP2 matches in receive mode, indicating that
; clock synchronisation has been lost in the receiver.
; Precond'ns: CCP2 Interrupt must be serviced.
; Postcond'ns:
; Regs Used:
;***
CLOCK_WATCHDOG:
 ; We have lost the clock, so reset the decoder.
 clrf bitcount ; Reset the bit counter.
 clrf shiftreg_l ; Clear the shift registers
 clrf shiftreg_h ; ...
 bcf clock_detect ; Reset the clock detect flag.
 bcf RXLED
 return

 end

Li-Wen Yip School of Engineering, James Cook University 143

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Li-Wen Yip School of Engineering, James Cook University 144

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.8 - MAC.INC

;***
; MAC Layer Header File
; Version 1.00
; 16/09/2005
 extern MAC_INIT, MAC_TEST ; Initialisation
 extern FRAME_ENCODER, FRAME_DECODER, RESET_DECODER ; High Prioirity ISR's
 extern CSMA, TMR0_ISR, INT1_ISR, TRAFFIC_CONTROL ; Low Priority ISR's
 extern rxbuf, txbuf, mac_status
 #define packet_received mac_status, 0 ;Indicates we have received a packet.
 #define packet_transmitted mac_status, 1 ;Indicates we are ready to send a packet.
 #define retry_limit_reached mac_status, 2 ;Indicates we reached the retry limit.

Table E.9 - MAC.INC

;***
; MEDIA ACCESS CONTROL LAYER MODULE
;
; Version 1.00
; 16/9/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;
; Description:
;
; Functions:
;
; Dependencies:
;
; Resources Used:
;
; Things you must do to use this module:
;
; What you need to understand to work with this code:
;
; Notes:
;
;***
; MASTER HEADER FILE
 #include "MasterHeader.inc"

;***
; CONFIGURATION CONSTANTS
; Preamble (Synchronization Header)
; These variables define the preamble that will be sent at the start of
; every packet.
; The encoder will sent (PREAMBLE_LEN) bytes of PREAMBLE_BYTE,
; followed by one byte of SOF_BYTE.
; The decoder will detect one byte of PREAMBLE_BYTE immediately
; followed by one byte of SOF_BYTE.
 #define PREAMBLE_BYTE 0x55 ; 10101010 LSB first
 #define SOF_BYTE 0x00 ; 00000000 LSB first
; CSMA: number of times to retry before giving up.
 #define RETRY_LIMIT d'10' ; retry 10 times.
; Transmit/Recieve buffer sizes
RXBUFLEN equ 0x40 ; 64 bytes
TXBUFLEN equ 0x40 ; 64 bytes

Li-Wen Yip School of Engineering, James Cook University 145

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; MAC Constants - in TMR0 periods. TMR0 is running on a 1:256 prescaler.
; Amount of time to stay awake for.
WAKETIME equ .39 ; 10 milliseconds
; Amount of time to sleep for during low traffic.
SLEEPTIME_L equ .3906 ; 1 second
;SLEEPTIME_L equ .10838 ; 2.7746 seconds
; Amount of time to sleep for during high traffic.
SLEEPTIME_H equ .217 ; 55.6 milliseconds
; Preamble length during low traffic.
PREAMBLELEN equ .125 ; 125 bytes = 200ms @ 5000 baud
; Preamble length during high traffic.
PREAMBLELEN2 equ .32 ; 32 bytes = 50ms @ 5000 baud
; Define this cosnstant to use BAPSA (BASIC ADAPTIVE PREAMBLE SAMPLING ALGORITHM)
#define BAPSA

;***
; CONSTANTS
; Frame types
NORMAL equ 0x00
CLOCKSYNC equ 0x01

;**
; IMPORTED VARIABLES
 ; Physical Layer
 #include "PHY.inc"

 ; CRC Checking
 #include "CRC.inc"

 ; Software Timer 4 - See <SWTimers.asm>
 extern TMRF4, TMRL4, TMRH4

;**
; GLOBAL VARIABLES
; Transmit/Receive Buffers
.mac_buffers udata
rxbuf res RXBUFLEN ; Receive Buffer
txbuf res TXBUFLEN ; Transmit Buffer
rxbuf_b res RXBUFLEN ; Receive Buffer
txbuf_b res TXBUFLEN ; Transmit Buffer
.mac_globals udata_acs
; Status flags.
mac_status res 1
 #define packet_received mac_status, 0 ;Indicates we have received a packet.
 #define packet_transmitted mac_status, 1 ;Indicates we are ready to send a packet.
 #define retry_limit_reached mac_status, 2 ;Indicates we reached the retry limit.
 global rxbuf, txbuf, mac_status

;**
; LOCAL VARIABLES
.mac_locals udata_acs

; Internal Flags
mac_flags res 1
 #define mac_csma_active mac_flags, 0 ; The CSMA algorithm is running.
 #define mac_sampling mac_flags, 1 ; We are in a sampling period.
 #define mac_schedule_htp mac_flags, 2 ; We are in a scheduled high traffic period.
 #define mac_dynamic_htp mac_flags, 3 ; We are in a dynamic high traffic period.

tx_flags res 1
 #define tx_clock tx_flags, 0 ; Do we have to do a toggle?
 #define preamble_sent tx_flags, 1 ; Set when we have sent the start of frame.
 #define framelen_sent tx_flags, 2 ; Set when we have sent the frame length.
 #define frame_sent tx_flags, 3 ; Set when we have sent all the data bytes.
rx_flags res 1
 #define got_sof rx_flags, 0 ; Set when we have detected the start of frame.
 #define got_framelen rx_flags, 1 ; Set when we have received frame length.

Li-Wen Yip School of Engineering, James Cook University 146

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 #define got_frame rx_flags, 2 ; Set when we have received an entire frame.
; Frame Encoding
preamble_len_l res 1 ; Preamble length
preamble_len_h res 1 ; ...
bytecount_l res 1 ; Byte Counter
bytecount_h res 1 ; ...
; CSMA
retry_counter res 1 ; Count how many times we have tried to transmit.
timeout_l res 1 ; Retry timeout.
timeout_h res 1
timeout_mask_l res 1 ; Retry timeout mask.
timeout_mask_h res 1

; Preamble sampling
sleeptime_l res 1 ; Sleep value in use.
sleeptime_h res 1 ; ...
hitraf_timer res 1 ; High traffic mode timer.
schedule_timer res 1 ; Timer for scheduled high traffic periods
dynamic_timer res 1 ; Timer for dynamic high traffic periods
sleeping_con res 1 ; Control register for sleep interval.
preamble_con res 1 ; Control register for preamble length.
scheduled equ .0
dynamic equ .1

; Popcorn buffering
popcorn_flags res 1
 #define switch_rxbuf popcorn_flags, 0 ; rxbuf_a and rxbuf_b are switched.
 #define switch_txbuf popcorn_flags, 1 ; rxbuf_b and rxbuf_a are switched.
;**
; IMPORTED SUBROUTINES
 #include "Buffers.inc" ; Software Buffers Header File
 #include "RTC.inc"

;**
; EXPORTED SUBROUTINES
 global MAC_INIT, MAC_TEST ; Initialisation
 global FRAME_ENCODER, FRAME_DECODER, RESET_DECODER ; High Prioirity ISR's
 global CSMA, TMR0_ISR, INT1_ISR, TRAFFIC_CONTROL ; Low Priority ISR's
;**
; START OF CODE
 CODE

MAC_TEST:

 BUF_SEL txbuf, TXBUFLEN
 BUF_CLEAR
 movlw 41
 BUF_PUT
 movlw 42
 BUF_PUT
 movlw 43
 BUF_PUT
 BUF_MARKEND
 call TX_PACKET

Loopy:
 clrwdt
 bra Loopy

;***
; SUBROUTINE: MAC_INIT

Li-Wen Yip School of Engineering, James Cook University 147

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

;
; Description: Initialisation for mac layer.
; Precond'ns: -
; Postcond'ns:
; Regs Used: WREG, CCP1 Registers, CCP2 Registers, TMR3 Registers
;***
MAC_INIT:

 ; Clear all variables.
 clrf mac_flags
 clrf retry_counter
 clrf schedule_timer
 clrf dynamic_timer
 clrf sleeping_con
 clrf preamble_con

 ; Set Sleep interval and preamble length for low traffic
 call SET_LTP_SLEEP
 call SET_LTP_PREAMBLE

 ; Configure TIMER0 (Sampling Timer)
 bcf INTCON, TMR0IE ; Disable the TMR0 interrupt.
 bcf INTCON2, TMR0IP ; TMR0 (Sampling Timer) is low priority.
 movlw b'10000111' ; Load config byte for TIMER0.
 ; '1-------' ; Enable Timer0.
 ; '-0------' ; Configure as 16-bit counter.
 ; '--0-----' ; Use internal clock (Fosc/4).
 ; '----0---' ; Use Prescaler.
 ; '-----111' ; 1:256 Prescale.
 movwf T0CON

 ; Configure TIMER1 (High Traffic Mode Timer)
 bcf PIE1, TMR1IE ; Disable the TMR1 interrupt.
 bcf IPR1, TMR1IP ; TMR0 (High Traffic Timer) is low priority.
 movlw b'10110000' ; Load config byte for TIMER1.
 ; '1-------' ; Enable 16-bit read/writes.
 ; '--11----' ; 1:8 Prescale.
 ; '----0---' ; Disable Timer1 RC Oscillator.
 ; '------0-' ; Use internal clock (Fosc/4).
 ; '-------0' ; Disable TIMER1
 movwf T1CON
 bsf PIE1, TMR1IE ; Enable the TMR1 interrupt.

 ; Make sure the TIMER0 Interrupt runs straight away to initialise TMR0
 bsf INTCON, TMR0IF ; SET!!! the TIMER0 Interrupt flag.
 bsf INTCON, TMR0IE ; Enable the TIMER0 Interrupt.
 return

; ###
; ###
; ###
; ###
;
; MEDIA ACCESS CONTROL
;
; ###
; ###
; ###
; ###
;***
; SUBROUTINE: TX_PACKET
;
; Description: Transmit a packet.
; Precond'ns: An outgoing packet has been placed in Buffer 1.
; Postcond'ns: CRC is appended to buffer and packet transmission is initiated.
; Regs Used:
;***
TX_PACKET:

Li-Wen Yip School of Engineering, James Cook University 148

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 ; Calculate the CRC on the packet.
 BUF_SEL txbuf, TXBUFLEN ; Select the transmit buffer
 call CALC_CRC ; Calculate the CRC on the buffer.
 movf crclow, W ; Load the crc low byte...
 BUF_PUT ; And append it to the buffer. <BUFPUT in buffers.asm>
 movf crchigh, W ; Load the crc high byte...
 BUF_PUT ; And append it to the buffer. <BUFPUT in buffers.asm>
 BUF_MARKEND

_TX_PACKET_TEST:
 ; Reset the retry count and timeout mask and run the CSMA routine.
 movlw RETRY_LIMIT ; Set the retry counter.
 movwf retry_counter ; ...
 movlw b'00111111' ; Set the retry timeout mask.
 movwf timeout_mask_l ; ...
 clrf timeout_mask_h ; ...
 bsf mac_csma_active ; Set the flag that lets the CSMA subroutine run.
 btfss mac_sampling ; Are we currently sampling?
 call _START_SAMPLING ; NO - start sampling now.
 return

;***
; SUBROUTINE: TMR0_ISR (ISR)
;
; Description:
;
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
TMR0_ISR:

 ; Service the TMR0 Interrupt.
 SERVICE_IRP INTCON, TMR0IF, INTCON, TMR0IE

 ; Check whether CSMA or Preamble Sampling has control
 btfsc mac_csma_active ; Is CSMA active?
 bra CSMA ; YES - run the CSMA routine.
 bra PREAMBLE_SAMPLING ; NO - run the Preamble Sampling routine.

;***
; SUBROUTINE: PREAMBLE_SAMPLING (ISR)
;
; Description: Use TIMER0 to control preamble sampling.
; Should be configured as a low priority interrupt.
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
PREAMBLE_SAMPLING:

 ; Check if we are currently transmitting.
 btfss NTXEN ; Are we transmitting?
 bra _DONTTOUCH ; Don't touch anything.
 ; Check if we are currently sampling.
 btfss mac_sampling ; Are we sampling?
 bra _START_SAMPLING ; NO - start sampling.
; --
; Perform a clear channel assesment.
_PREAMBLE_SAMPLING_CCA:
 bcf mac_sampling ; Clear the sampling flag.
 btfss clock_detect ; Do we have a valid signal?
 call RX_DISABLE ; NO - Stop sampling.
 ; Set TMR0 to overflow in SLEEPTIME.
 ; When TMR0 overflows, we will start sampling again.

Li-Wen Yip School of Engineering, James Cook University 149

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

_DONTTOUCH:
 bcf T0CON, TMR0ON ; Stop the timer
 nop ; Wait for it to stop.
 movff sleeptime_h, TMR0H
 movff sleeptime_l, TMR0L
 bsf T0CON, TMR0ON ; Start the timer
 return

; ---
; Start sampling.
_START_SAMPLING:
 bsf mac_sampling ; Set the sampling flag.
 btfsc NRXEN ; Is the receiver already enabled?
 call RX_ENABLE ; NO - Enable the receiver.
 ; Set TMR0 to overflow in WAKETIME.
 ; When TMR0 overflows we will stop sampling.
 bcf T0CON, TMR0ON ; Stop the timer
 nop ; Wait for it to stop.
 movlw high (0xFFFF - WAKETIME)
 movwf TMR0H
 movlw low (0xFFFF - WAKETIME)
 movwf TMR0L
 bsf T0CON, TMR0ON ; Start the timer
 return

;***
; SUBROUTINE: CSMA
;
; Description: - Checks if the medium is free.
; - If the medium is free, transmission is initiated.
; - If it is not free, a random timeout is set.
; - If after the timeout the medium is still not free,
; the timeout is doubled and reset.
;
; - This routine is designed to be called once from normal
; code, and subsequently from interrupt on TIMER2.
;
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
CSMA:

; --
; Perform a clear channel assesment.
_CSMA_CCA:
; btfss NCD ; Not used becase of noise problems.
 btfsc clock_detect ; Is there a valid clock?
 bra _CSMA_WAIT ; YES - set a timeout.
; ---
; We are Clear To Send, initiate transmission.
_CSMA_CTS:

 ; Initialise the frame encoder
 call RX_DISABLE ; Turn off the decoder so it can't
 ; change things while we are initialising.
 movlw low preamble_len_l ; Load up the preamble counter
 movwf bytecount_l ; ...
 movlw low preamble_len_h ; ...
 movwf bytecount_h ; ...
 clrf tx_flags ; Clear all flags.
 call FRAME_ENCODER ; Run the frame encoder once so the first byte is loaded.
 call TX_ENABLE ; Enable the transmitter.
 bcf mac_csma_active ; Hand control back to the preamble sampler.

Li-Wen Yip School of Engineering, James Cook University 150

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 ; Set a new timeout, so it won't take 16.777 seconds for the preamble
 ; sampler routine to run again.
 bcf T0CON, TMR0ON ; Stop the timer
 nop ; Wait for it to stop.
 movff sleeptime_h, TMR0H
 movff sleeptime_l, TMR0L
 bsf T0CON, TMR0ON ; Start the timer
 return

; ---
; Media is busy, set a random timeout with exponential backoff.
; Max wait Time = 2^retry_count milliseconds
_CSMA_WAIT:
 btg TXLED

 ; Check how many times we have tried to transmit.
 movf retry_counter,f ; Has the retry counter reached zero?
 bz _CSMA_GIVEUP ; YES - give up.
 ; Decrement the retry counter, and multiply the timeout mask by two.
 decf retry_counter ; We are about to burn another retry.
 bsf STATUS, C ; Set the carry bit
 rlcf timeout_mask_l ; Left shift the mask.
 rlcf timeout_mask_h ; ...
 ; Set a random timeout
 movf crclow, w ; Get the crc low byte
 xorwf TMR3H, w ; Multiply it with the high byte of TMR3
 andwf timeout_mask_l, w ; Mask it.
 comf WREG ; Compliment it.
 movwf timeout_l ; Save it
 movf crchigh, w ; Get the crc high byte.
 xorwf TMR3L, w ; Multiply it with the low byte of TMR3.
 andwf timeout_mask_h, w ; Mask it.
 comf WREG ; Negate it.
 movwf timeout_h ; Save it.
 ; ###
 ; TO DO - set interim samples if the timeout is greater than the sleep
 ; interval required to maintain connectivity.
 ; ###
 bcf T0CON, TMR0ON ; Stop the timer
 nop ; Wait for it to stop.
 movff timeout_h, TMR0H
 movff timeout_l, TMR0L
 bsf T0CON, TMR0ON ; Start the timer
 return

; ---
; We have reached the retry limit; Give up already.
_CSMA_GIVEUP:
 return

; ###
; ###
; ###
; ###
;
; MAC LAYER RECONFIGURATION ROUTINES
;
; ###
; ###
; ###
; ###
;***
; SUBROUTINE: SET_HTP_SLEEP
;
; Description: Sets the sleep interval for high traffic (more frequent sampling).
; Precond'ns:
; Postcond'ns:

Li-Wen Yip School of Engineering, James Cook University 151

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; Regs Used:
;***
SET_HTP_SLEEP:
 ; Set the sleep interval for high traffic.
 movlw low (0xFFFF - SLEEPTIME_H)
 movwf sleeptime_l
 movlw high (0xFFFF - SLEEPTIME_H)
 movwf sleeptime_h
 return

;***
; SUBROUTINE: SET_HTP_PREAMBLE
;
; Description: Sets the preamble length for high traffic (shorter preamble).
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
SET_HTP_PREAMBLE:
 ; Set the preamble length for high traffic.
 movlw high PREAMBLELEN2
 movwf preamble_len_h
 movlw low PREAMBLELEN2
 movwf preamble_len_l
 return

;***
; SUBROUTINE: SET_LTP_SLEEP
;
; Description: Sets the sleep interval for low traffic (less frequent sampling).
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
SET_LTP_SLEEP:
 ; Set the sleep interval for low traffic.
 movlw low (0xFFFF - SLEEPTIME_L)
 movwf sleeptime_l
 movlw high (0xFFFF - SLEEPTIME_L)
 movwf sleeptime_h
 return

;***
; SUBROUTINE: SET_LTP_PREAMBLE
;
; Description: Sets the preamble length for low traffic (longer preamble).
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
SET_LTP_PREAMBLE:
 ; Set the preamble length for low traffic.
 movlw high PREAMBLELEN
 movwf preamble_len_h
 movlw low PREAMBLELEN
 movwf preamble_len_l
 return

;***
; SUBROUTINE: TRAFFIC_CONTROL (ISR)
;
; Description: Runs every 0.524288 seconds under TIMER1 Low Priority Interrupt.
; Counts down any high traffic periods which are running, and
; configures the preamble length and sleep interval accordingly.
;
; Precond'ns:
; Postcond'ns:
; Regs Used:

Li-Wen Yip School of Engineering, James Cook University 152

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

;***
TRAFFIC_CONTROL:

 ; Service the TMR1 Interrupt.
 SERVICE_IRP PIR1, TMR1IF, PIE1, TMR1IE

 ; Count down the scheduled high traffic period.
 call _SCHEDULED_HTP

 ; Count down the dynamic high traffic period.
 call _DYNAMIC_HTP

 ; Check if anything is still forcing the high traffic (shorter) sleep interval.
 call _CHECK_SLEEP_INTERVAL

 ; Check if anything is still forcing the high traffic (shorter) preamble length.
 call _CHECK_PREAMBLE_LENGTH

 ; return
 return

; --
; Count down the scheduled high traffic period.
_SCHEDULED_HTP:
 btfss mac_schedule_htp ; Are we in a scheduled high traffic period?
 return ; NO - return.
 decfsz schedule_timer ; Has the scheduled high traffic timer reached zero?
 return ; NO - return.
 ; End the scheduled high traffic period.
 bcf mac_schedule_htp ; We are no longer in a scheduled HTP.
 bcf sleeping_con, scheduled ; Scheduled HTP is not forcing shorter sleeping.
 bcf preamble_con, scheduled ; Scheduled HTP is not forcing shorter preamble.
 return

; --
; Count down the dynamic high traffic period.
_DYNAMIC_HTP:
 btfss mac_dynamic_htp ; Are we in a dynamic high traffic period?
 return ; NO - return.
 decfsz dynamic_timer ; Has the dynamic high traffic timer reached zero?
 return ; NO - return.
 ; End the dynamic high traffic period.
 bcf mac_dynamic_htp ; We are no longer in a dynamic HTP.
 bcf sleeping_con, dynamic ; Dynamic HTP is not forcing shorter sleeping.
 bcf preamble_con, dynamic ; Dynamic HTP is not forcing shorter preamble.
 return

; --
; Check if anything is still forcing the high traffic (shorter) sleep interval.
_CHECK_SLEEP_INTERVAL:
 tstfsz sleeping_con ; Is sleeping_con zero?
 return ; NO - return.
 ; YES - revert back to the low traffic (longer) sleeping interval.
 call SET_LTP_SLEEP
 return

; --
; Check if anything is still forcing the high traffic (shorter) preamble length.
_CHECK_PREAMBLE_LENGTH:
 ; Check if anything is still forcing a shorter preamble.
 tstfsz preamble_con ; Is preamble_con zero?
 return ; NO - return.
 ; YES - revert back to the low traffic (longer) preamble.
 call SET_LTP_PREAMBLE
 return

Li-Wen Yip School of Engineering, James Cook University 153

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

;***
; SUBROUTINE: SET_SCHEDULED_HTP
;
; Description: Starts a scheduled high traffic period for 9.961 seconds.
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
SET_SCHEDULED_HTP:

 ; Clear TIMER1 (High Traffic Timer) and start it
 clrf TMR1H
 clrf TMR1L
 bsf T1CON, TMR1ON

 ; Load the timer preset (19 * 524288us = 9.96s)
 movlw .19
 movwf schedule_timer

 ; Set the flags for a scheduled high traffic period.
 bsf mac_schedule_htp ; Clear the flag to say we are in a scheduled HTP.
 bsf sleeping_con, scheduled ; The scheduled HTP is forcing shorter sleeping.
 bsf preamble_con, scheduled ; The scheduled HTP is forcing shorter preamble.
 ; Set the sleep interval for high traffic.
 call SET_HTP_SLEEP

 ; Set the preamble length for high traffic.
 call SET_HTP_PREAMBLE
 return

;***
; SUBROUTINE: SET_DYNAMIC_HTP
;
; Description: Starts a scheduled high traffic period for 5.24 seconds.
; Precond'ns: Set sleeping_con<dynamic> to force faster sampling.
; Set preamble_con<dynamic> to force shorter preamble.
; Postcond'ns:
; Regs Used:
;***
SET_DYNAMIC_HTP:

 ; Clear TIMER1 (High Traffic Timer) and start it
 clrf TMR1H
 clrf TMR1L
 bsf T1CON, TMR1ON

 ; Load the timer preset (10 * 524288us = 5.24s)
 movlw .10
 movwf dynamic_timer

 ; Set the flags for a dynamic high traffic period.
 bsf mac_dynamic_htp ; Clear the flag to say we are in a dynamic HTP.
 ; Check if the dynamic HTP needs to force shorter sleeping.
 btfsc sleeping_con, dynamic ; Well does it?
 call SET_HTP_SLEEP ; YES - set shorter sleeping.
 ; Check if the dynamic HTP needs to force shorter sleeping.
 btfsc preamble_con, dynamic ; Well does it?
 call SET_HTP_PREAMBLE ; YES - set shorter sleeping.
 ; If we aren't in a sampling period, start one right now.
 btfss mac_sampling
 bsf INTCON, TMR0IF ; SET!!! the TIMER0 Interrupt flag.
 return

;***
; SUBROUTINE: INT1_ISR (ISR)
;
; Description: Starts a scheduled high traffic period for 9.961 seconds.

Li-Wen Yip School of Engineering, James Cook University 154

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
INT1_ISR:

 ; Service the INT1 Interrupt.
 SERVICE_IRP INTCON3, INT1IF, INTCON3, INT1IE

 ; Clear the RTC IRQ flags
 call RTC_CLEAR_IRQS

 ; Start
 call SET_SCHEDULED_HTP

 ; return
 return

;***
; SUBROUTINE: TX_SYNC_FRAME:
;
; Description: Transmit a clock sync frame.
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
TX_SYNC_FRAME:

 ; Select the TX Buffer and clear it.
 BUF_SEL txbuf, TXBUFLEN ; Select the transmit buffer.
 BUF_CLEAR ; Clear it.
 ; Put the frame type into the buffer
 movlw CLOCKSYNC
 BUF_PUT

 ; Load the current clock value into the buffer
 call RTC_GET_CLOCK

 ; Transmit the packet
 call TX_PACKET

 ; Set low traffic mode (make sure our preamble is long enough for all nodes)
; call SET_LOW_TRAFFIC
 return

; ###
; ###
; ###
; ###
;
; FRAME ENCODING / DECODING ROUTINES
;
; ###
; ###
; ###
; ###

;***
; Subroutine: FRAME_ENCODER
;
; Description: Encodes Frames. Should be called each time another
; bit is encoded.
;
; Precond'ns:
;

Li-Wen Yip School of Engineering, James Cook University 155

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; Postcond'ns:
;
; Regs Used: WREG, FSR0
;***
FRAME_ENCODER:

; ---
; DECISION: Check if the manchester encoder is ready for the next byte,
; and if we have a byte to give.
 btfss txbyte_empty ; Is the transmit buffer empty?
 return ; NO - return.
 btfsc frame_sent ; Do we have any data to transmit?
 bra _FRAME_SENT ; NOOOOOOO!
 bcf txbyte_empty ; YES - clear the flag and continue.
; ---
; DECISION: Check if we have transmitted the preamble and SOF yet.
 btfsc framelen_sent ; Have we sent the frame length yet?
 bra _TX_DATABYTE ; YES - transmit a data byte.
 ; NO - continue.
; ---
; DECISION: Check if we have transmitted the preamble and SOF yet.
 btfsc preamble_sent ; Have we sent the SOF yet?
 bra _TX_FRAMELEN ; YES - transmit the frame length.
 ; NO - continue.
; ---
; DECISION: Check if we have transmitted enough preamble bytes yet.
 tstfsz bytecount_h ; Is the bytecounter zero?
 bra _TX_PREAMBLE ; NO - send a preamble byte.
 tstfsz bytecount_l ; Is the bytecounter zero?
 bra _TX_PREAMBLE ; NO - send a preamble byte.
 bra _TX_SOF ; YES - send a SOF byte.
; ---
; PROCESS: Send a preamble byte.
_TX_PREAMBLE:
 movlw PREAMBLE_BYTE ; Copy the preamble byte ...
 movwf txbyte ; ... to the transmit reigster.
 decf bytecount_l ; Deccrement the counter.
 btfss STATUS, C ; ...
 decf bytecount_h ; ...
 return

; ---
; PROCESS: Send a SOF byte.
_TX_SOF:
 movlw SOF_BYTE ; Copy the SOF byte ...
 movwf txbyte ; ... to the transmit reigster.
 bsf preamble_sent ; Set the flag to say we have sent the preamble.
 return

; ---
; PROCESS: Send a Frame Length byte.
_TX_FRAMELEN:
 BUF_SEL txbuf, TXBUFLEN ; Select the transmit buffer.
 BUF_GETEND ; Get the size of the buffer.
 movwf txbyte ; Place it in the transmit reigster.
 bsf framelen_sent ; Set flag to say that we have sent the frame length.
 movlw 0x00 ; Reset the buffer cursor.
 BUF_SETCURSOR ; ...
 return

; ---
; PROCESS: Send a DATA byte.
_TX_DATABYTE:
 BUF_SEL txbuf, TXBUFLEN ; Select the transmit buffer.
 BUF_GET ; Get a byte from the buffer.
 movwf txbyte ; Place it in the transmit reigster.
 BUF_SNEOF ; Was that the last byte in the buffer?
 bsf frame_sent ; YES - set the frame sent flag.

Li-Wen Yip School of Engineering, James Cook University 156

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 return ; NO - return.
_FRAME_SENT:

 #ifdef BAPSA
 ; BASIC ADAPTIVE PREAMBLE SAMPLING ALGORITHM TEST:
 ; Switch to high traffic rate for 5 seconds.
 btfss NTXEN ; Has the receiver been disabled yet?
 return ; NO - return.
 bsf sleeping_con, dynamic ; change the sleeping interval.
 bsf preamble_con, dynamic ; change the preamble length.
 call SET_DYNAMIC_HTP ; Just do it.
 #endif
 return

;***
; SUBROUTINE: FRAME_DECODER:
;
; Description: - Decodes frames.
; - Should be called every time a new bit is decoded.
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
FRAME_DECODER:

; ---
; DECISION: Check if we are currently in the process of receiving a frame.
; got_sof is clear: Run the SOF detect routine.
; got_sof is set: Run the frame receive routine.
 btfss got_sof ; Have we already detected the SOF pattern?
 bra _GET_SOF ; NO - look for the SOF pattern.
; ---
; DECISION: Check if we have received a byte.
; YES - process the byte.
; NO - return.
 btfss rxbyte_full ; Have we decoded a full byte?
 return ; NO - wait till we have.
 bcf rxbyte_full ; YES - Clear the flag ...
; ---
; DECISION: Check if we have received the frame length byte yet.
; got_framelen is clear: Run the Frame Length byte receive routine.
; got_framelen is set: Run the data byte receive routine.
 btfss got_framelen ; Have we received the frame length yet?
 bra _GET_FRAMELEN ; NO - receive the frame length byte.
 ;bra _GET_DATABYTE ; YES - receive a data byte.
; ---
; PROCESS: Read the data byte into the buffer.
_GET_DATABYTE:
 BUF_SEL rxbuf, RXBUFLEN ; Select the receive buffer.
 movf rxbyte, w ; Load up the byte we just received.
 BUF_PUT ; Put it into the buffer. <BUFPUT in buffers.asm>
 BUF_SNFULL ; Is the buffer full?
 bra _GOT_FRAME ; YES: we have received as much of the frame as possible.
 dcfsnz bytecount_l ; Have we received all the bytes in the frame?
 bra _GOT_FRAME ; YES - we have received the entire frame.
 return ; NO - keep receiving bytes.
; ---
; PROCESS: Check if we have received the start of frame pattern.
_GET_SOF:

 ; Don't try and detect the SOF until we have received a new bit.
 movlw 0x00 ;
 cpfsgt bitcount ; Is bitcount > 0?
 return ; NO - return.
 clrf bitcount ; YES - clear bitcount and try to detect SOF.
 ; We clear the bitcount to do two things:

Li-Wen Yip School of Engineering, James Cook University 157

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 ; 1) So we can determine if a new bit has arrived by testing if bitcount != zero.
 ; 2) It stops the bit counter getting to 8, therefore the physical layer
 ; cannot assert the clock_detect flag. If we have not yet detected the SOF,
 ; we only want to assert the clock detect if we detect a valid preamble.
 ; Try and detect the preamble byte.
 movlw PREAMBLE_BYTE ; Load up the preamble byte.
 cpfseq shiftreg_l ; Compare with the low byte of the shiftreg.
 return ; It wasn't equal, so just try again next time.
 bsf clock_detect ; We have preamble - set the clock detect flag.
 bsf RXLED

 ; We have the preamble byte in the low byte of the shiftreg,
 ; so try and detect the SOF (start of frame) byte.
 movlw SOF_BYTE ; Load up the start byte.
 cpfseq shiftreg_h ; Compare with the high byte of the shiftreg.
 return ; It wasn't equal, so just try again next time.
 ; We have a winner!
 bsf got_sof ; Set the Got Start Of Frame flag.
 clrf bitcount ; Reset the bit counter.
 bsf TXLED ; Turn on the RED LED to say we got the SOF.
 return

; ---
; PROCESS: Read the frame length, and store it so we know how many bytes to expect.
; Set a flag to say we know how many bytes to receive, and reset the buffer.
_GET_FRAMELEN:
 movff rxbyte, bytecount_l ; Save the frame length
 bsf got_framelen ; Set the flag to say we know the frame length
 BUF_SEL rxbuf, RXBUFLEN ; Select the Receive Buffer.
 BUF_CLEAR ; Reset the buffer.
 return

; ---
; We have received the entire frame - Verify the CRC.
_GOT_FRAME:
 bcf TXLED

 ; Mark the end of the receive buffer
 ; (Buffer should still be selected).
 BUF_MARKEND

 ; Calculate the CRC on the receive buffer.
 call CALC_CRC ; Calculate the CRC on the buffer.
 ; Verify that the CRC for the packet is zero.
 tstfsz crchigh ; Is the high byte zero?
 bra RESET_DECODER ; NO - CRC is bad, reset the decoder.
 tstfsz crclow ; Is the low byte zero?
 bra RESET_DECODER ; NO - CRC is bad, reset the decoder.
; The CRC was good.
_CRC_GOOD:

 #ifdef BAPSA
 ; BASIC ADAPTIVE PREAMBLE SAMPLING ALGORITHM:
 ; Sample at the high traffic rate for 5 seconds, but don't change
 ; the preamble.
 bsf sleeping_con, dynamic ; Only change the sleeping interval
 call SET_DYNAMIC_HTP ; Just do it.
 #endif

 ; Remove the last two bytes (the CRC) from the buffer.
 BUF_GETEND ; Get the end pointer.
 sublw d'2' ; Shorten the buffer by 2
 BUF_MARKEND ; Set the end pointer.
 ; Go back to the beginning of the buffer
 movlw 0x00
 BUF_SETCURSOR

Li-Wen Yip School of Engineering, James Cook University 158

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 ; Get the first byte (frame type) and check it
 BUF_GET
 sublw CLOCKSYNC ; Is it a clocksync packet?
 bz _UPDATE_CLOCK ; YES - sync the clock.
 ; NO - its just a normal packet.
 bsf packet_received ; Set the packet received flag.
 return ; Go pikachu!
_UPDATE_CLOCK:
 call RTC_SET_CLOCK
 call RESET_DECODER
 return

; Reset the decoder - start looking for a SOF again.
RESET_DECODER:
 clrf rx_flags ; Clear all flags.
 clrf bytecount_l ; Clear byte counter.
 clrf bytecount_h ; Clear byte counter.
 ; If we are aren't in a sampling window, turn off the receiver.
 btfss mac_sampling ; Are we sampling?
 call RX_DISABLE ; NO - disable the receiver.
 return ; Turns the node into a toadstool.
;***
; END OF CODE
 END

Li-Wen Yip School of Engineering, James Cook University 159

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

E.3 PERIPHERALS

Table E.10 - SPI.ASM

;***
; SPI MODULE
;
; Version 0.10
; 17/07/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;
; Description:
; Provides routines for initialization and transfer on SPI.
;
; Functions:
;
; Dependencies:
;
; Resources Used:
; - MSSP Module.
;
; Things you must do to use this module:
;
; What you need to understand to work with this code:
;
; Notes:
;
;***
; MASTER HEADER FILE
 #include "MasterHeader.inc"

;***
; CONFIGURATION CONSTANTS
;***
; CONSTANTS
;**
; IMPORTED VARIABLES
 UDATA_ACS
;**
; GLOBAL VARIABLES
;**
; LOCAL VARIABLES
;**
; IMPORTED SUBROUTINES
;**
; EXPORTED SUBROUTINES
 global SPI_INIT, SPIRW

;**
; START OF CODE
 CODE

;***
; Subroutine: SPI_INIT
;
; Description: Initialises the MSSP in SPI mode 3.
; Regs Used: WREG, TRISC, SSP Registers.
;***
SPI_INIT:
 ; Initialise the MSSP in SPI mode

Li-Wen Yip School of Engineering, James Cook University 160

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 movlw B'00100000'
 ; '--1-----' ; Enables SPI and configure SCK, SDO, SDI, and SS
 ; '---0----' ; Clock idle low
 ; '----0000' ; SPI Master mode, clock = FOSC/4
 movwf SSPCON1 ; ...
 clrf SSPCON2 ; This register only used for I2C mode.
 movlw b'11000000'
 ; '1-------' ; Input data sampled at end of data output time
 ; '-1------' ; Data transmitted on rising edge of SCK
 movwf SSPSTAT

 ; Configure SPI pins
 CONFIG_SPI_PINS
 return ; Done.
;***
; Subroutine: SPIRW
;
; Description: Transfers 1 byte on the SPI bus.
; Precond'n: WREG contains the data to be transmitted.
; Postcond'n: WREG contains the data that was received.
; Regs Used: WREG, SSPBUF
;***
SPIRW:
 movwf SSPBUF ; Move data to be transmitted into SSPBUF.
_SPIRW_LOOP:
 btfss SSPSTAT, BF ; Check if transfer is complete.
 bra _SPIRW_LOOP ; NO - Loop.
 movf SSPBUF, W ; YES - Move the received data into WREG.
 return ; Done.

 End

Li-Wen Yip School of Engineering, James Cook University 161

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.11 - RTC.INC

;***
; Real Time Clock Module Header File
; Version 1.00
; 16/09/2005
; Initialisation
 extern RTC_INIT
; Random Crap
 extern RTC_CLEAR_IRQS, RTC_GET_STATUS, RTC_GET_CLOCK, RTC_SET_CLOCK

Table E.12 - RTC.ASM

;***
; RTC MODULE
;
; Version 0.10
; 17/07/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;
; Description:
; Provides routines for accessing the Maxim-Dallas DS1305 Real Time Clock Chip..
;
; Functions:
;
; Dependencies:
; SPI.asm
; Buffers.inc
;
; Resources Used:
; - MSSP Module.
;
; Things you must do to use this module:
;
; What you need to understand to work with this code:
;
; Notes:
;
;***
; MASTER HEADER FILE
 #include "MasterHeader.inc"

;***
; CONFIGURATION CONSTANTS
;***
; CONSTANTS
; Internal Addresses
CLOCK equ 0x00 ; Address of the Clock Registers
ALARM0 equ 0x07 ; Address of Alarm 0 Registers
ALARM1 equ 0x0B ; Address of Alarm 1 Registers
CONTROL equ 0x0F ; Control Register
RTCSTATUS equ 0x10 ; Status Register
CHARGER equ 0x11 ; Trickle Charger Register
USERRAM equ 0x20 ; User RAM 0x20 - 0x7F
; Offsets
SECONDS equ 0x00 ; Seconds Offset

Li-Wen Yip School of Engineering, James Cook University 162

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

MINUTES equ 0x01 ; Clock Minutes Offset
HOURS equ 0x02 ; Clock Hours Offset
DAY equ 0x03 ; Clock Day Offset
DATE equ 0x04 ; Clock Date Offset
MONTH equ 0x05 ; Clock Month Offset
YEAR equ 0x06 ; Clock Year Offset
WRITE equ 0x80 ; Write offset

;**
; IMPORTED VARIABLES
 UDATA_ACS
;**
; GLOBAL VARIABLES
;**
; LOCAL VARIABLES
;**
; IMPORTED SUBROUTINES
 #include "Buffers.inc"

; From <SPI.asm>
 extern SPI_INIT, SPIRW

;**
; EXPORTED SUBROUTINES
 global RTC_INIT
 global RTC_CLEAR_IRQS, RTC_GET_STATUS, RTC_GET_CLOCK, RTC_SET_CLOCK

;**
; START OF CODE
 CODE

;***
; Subroutine: RTC_INIT
;
; Description: Initialises the Real Time Clock.
; Precond'ns: SPI bus has been initialised.
; Postcond'ns:
; Regs Used: WREG
;***
RTC_INIT:

 ; Set up RTC Pins
 CONFIG_RTC_PINS

 ; Set up INT1
 bcf INTCON2, INTEDG1 ; Trigger on falling edge.
 bcf INTCON3, INT1IP ; Low Priority
 bcf INTCON3, INT1IF ; Clear the IRQ flag
 bsf INTCON3, INT1IE ; Enable the Interrupt
 ; Enable Writes
 bsf RTC_CS ; Start an operation.
 movlw CONTROL + WRITE ; Load the CONTROL register write address
 call SPIRW ; ...
 movlw b'00000000' ; Load a byte to enable writes.
 ; '-0------' ; Disable Write Protect.
 call SPIRW ; ...
 bcf RTC_CS ; End the operation.
 nop

 ; Set up the control register
 bsf RTC_CS ; Start an operation.
 movlw CONTROL + WRITE ; Load the CONTROL register write address
 call SPIRW ; ...
 movlw b'00000011'
 ; '0-------' ; Enable the oscillator.

Li-Wen Yip School of Engineering, James Cook University 163

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 ; '-0------' ; Disable Write Protect.
 ; '-----0--' ; Both Alarm 0 and Alarm 1 activate /INT0.
 ; '------1-' ; Enable Alarm 1 Interrupt.
 ; '-------1' ; Enable Alarm 0 Interrupt.
 call SPIRW ; ...
 bcf RTC_CS ; End the operation.
 nop

 ; Set up Alarm 0 to interrupt when seconds = 00
 bsf RTC_CS ; Start an operation.
 movlw ALARM0 + WRITE ; Load the Alarm 0 write address
 call SPIRW ; ...
 movlw 0x00 ; Load 00 seconds (BCD)
 call SPIRW ; Write to the seconds register
 movlw b'10000000' ; Set the bit mask
 call SPIRW ; Write to the minutes register
 movlw b'10000000' ; Set the bit mask
 call SPIRW ; Write to the hours register
 movlw b'10000000' ; Set the bit mask
 call SPIRW ; Write to the days register
 bcf RTC_CS ; End the operation.
 nop

 ; Set up Alarm 1 to interrupt when seconds = 30
 bsf RTC_CS ; Start an operation.
 movlw ALARM1 + WRITE ; Load the Alarm 1 write address
 call SPIRW ; ...
 movlw 0x30 ; Load 30 seconds (BCD)
 call SPIRW ; Write to the seconds register
 movlw b'10000000' ; Set the bit mask
 call SPIRW ; Write to the minutes register
 movlw b'10000000' ; Set the bit mask
 call SPIRW ; Write to the hours register
 movlw b'10000000' ; Set the bit mask
 call SPIRW ; Write to the days register
 bcf RTC_CS ; End the operation.
 nop

; return
; DEBUGGING CODE...
;
;_READCLOCK:
; ; Do some reads
; bsf RTC_CS ; Start an operation.
; movlw CLOCK ; Load the clock read address
; call SPIRW ; ...
; call SPIRW ; Read Seconds. (CONTROL)
; call SPIRW ; Read Minutes. (STATUS)
; call SPIRW ; Read Hours.
; call SPIRW ; Read Day.
; call SPIRW ; Read Date.
; call SPIRW ; Read Month.
; call SPIRW ; Read Year.
; bcf RTC_CS ; End the operation.
; nop
;
; return

;***
; Subroutine: CRTC_CLEAR_IRQS
;
; Description: Clears both IRQ flags in the STATUS register by reading
; from the DAY register of ALARM0 and the SECONDS register of ALARM1
; Precond'ns:
; Postcond'ns:
; Regs Used: WREG
;***
RTC_CLEAR_IRQS:

Li-Wen Yip School of Engineering, James Cook University 164

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 ; Read 0x0A (ALARM0-DAY) and 0x0B (ALARM1-SECONDS).
 bsf RTC_CS ; Start an operation.
 movlw ALARM0 + DAY ; Load the Alarm 0 DAY read address
 call SPIRW ; ...
 call SPIRW ; Read ALARM0-DAY
 call SPIRW ; Read ALARM1-SECONDS
 bcf RTC_CS ; End the operation.
 nop
 return

;***
; Subroutine: RTC_GET_STATUS
;
; Description: Get the status register.
; Precond'ns:
; Postcond'ns:
; Regs Used: WREG
;***
RTC_GET_STATUS:
 bsf RTC_CS ; Start an operation.
 movlw RTCSTATUS ; Load the STATUS register read address
 call SPIRW ; ...
 call SPIRW ; Read one byte.
 bcf RTC_CS ; End the operation.
 return

;***
; Subroutine: RTC_GET_CLOCK
;
; Description: Read the clock into the currently selected buffer.
; Precond'ns: There are at least 7 free bytes after the current cursor location.
; Postcond'ns:
; Regs Used: WREG
;***
RTC_GET_CLOCK:
 bsf RTC_CS ; Start an operation.
 movlw CLOCK ; Load the CLOCK register read address
 call SPIRW ; ...
 call SPIRW ; Read Seconds and place it in the buffer.
 addlw d'01' ; Compensate for the 1 second delay
 BUF_PUT
 call SPIRW ; Read Minutes and place it in the buffer.
 BUF_PUT
 call SPIRW ; Read Hours and place it in the buffer.
 BUF_PUT
 call SPIRW ; Read Day and place it in the buffer.
 BUF_PUT
 call SPIRW ; Read Date and place it in the buffer.
 BUF_PUT
 call SPIRW ; Read Month and place it in the buffer.
 BUF_PUT
 call SPIRW ; Read Year and place it in the buffer.
 BUF_PUT
 BUF_MARKEND ; Mark the end of the buffer.
 bcf RTC_CS ; End the operation.
 return

;***
; Subroutine: RTC_SET_CLOCK
;
; Description: Set the clock from the currently selected buffer.
; Precond'ns: The buffer contains 7 clock bytes at the current cursor location.
; Postcond'ns:
; Regs Used: WREG
;***
RTC_SET_CLOCK:

Li-Wen Yip School of Engineering, James Cook University 165

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 bsf RTC_CS ; Start an operation.
 movlw CLOCK + WRITE ; Load the CLOCK register write address
 call SPIRW ; ...
 BUF_GET ; Get the Seconds byte and write it to the RTC chip.
 call SPIRW
 BUF_GET ; Get the Minutes byte and write it to the RTC chip.
 call SPIRW
 BUF_GET ; Get the Hours byte and write it to the RTC chip.
 call SPIRW
 BUF_GET ; Get the Day byte and write it to the RTC chip.
 call SPIRW
 BUF_GET ; Get the Date byte and write it to the RTC chip.
 call SPIRW
 BUF_GET ; Get the Month byte and write it to the RTC chip.
 call SPIRW
 BUF_GET ; Get the Year byte and write it to the RTC chip.
 call SPIRW
 bcf RTC_CS ; End the operation.
 return

 END

Li-Wen Yip School of Engineering, James Cook University 166

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.13 - ROUTECACHE.ASM

;***
; ROUTE CACHE MODULE
;
; Version 0.10
; 17/07/2005
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;
; Description:
;
; Use locations in FRAM which are 4 bytes long.
;
; Dependencies:
; a) SPI.ASM - SPI routines and initlialisation.
;
; Resources Used:
;
; Things you must do to use this module:
;
; What you need to understand to work with this code:
;
; Notes:
;
;***
; MASTER HEADER FILE
 #include "MasterHeader.inc"

;***
; CONFIGURATION CONSTANTS
;***
; CONSTANTS
; FRAM Op-codes
OP_WRSR equ 0x01 ; Write Status Register
OP_WRITE equ 0x02 ; Write Memory Data
OP_READ equ 0x03 ; Read Memory Data
OP_WRDI equ 0x04 ; Write Disable
OP_RDSR equ 0x05 ; Read Status Register
OP_WREN equ 0x06 ; Set Write Enable Latch
;**
; IMPORTED VARIABLES
 UDATA_ACS
;**
; GLOBAL VARIABLES
; Fields in each route record
source_addr res 1
dest_addr res 1
next_hop res 1
tx_power res 1

 global source_addr, dest_addr, next_hop, tx_power

;**
; LOCAL VARIABLES
cursor_l res 1
cursor_h res 1
end_l res 1
end_h res 1

Tableptr res 1 ; Routing table pointer
;**

Li-Wen Yip School of Engineering, James Cook University 167

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; IMPORTED SUBROUTINES
; From SPI.asm
 extern SPIRW

;**
; EXPORTED SUBROUTINES
 global TEST_ROUTECACHE, FRAM_INIT

;**
; START OF CODE
 CODE

;***
; SUBROUTINE: FRAM_INIT
;
; Description: - Initialise the FRAM.
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
FRAM_INIT:

 ; Set up FRAM pins.
 CONFIG_FRAM_PINS
 return

;***
; MACRO: FRAM_READ
;
; Description: Tell the FRAM we want to read from the specified address.
; Arguments:
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
FRAM_READ macro addr_h, addr_l

 ; Start an FRAM operation (Set /CS low)
 bcf FRAM_NCS

 ; Send the READ op-code to the FRAM.
 movlw OP_READ ; Tell FRAM we want to read.
 call SPIRW ; ...
 ; Send the memory address to the FRAM.
 movf addr_h, W ; From this high memory location.
 call SPIRW ; ...
 movf addr_l, W ; And this low memory location.
 call SPIRW ; ...
 endm

;***
; MACRO: FRAM_WRITE
;
; Description: Tell the FRAM we want to write at the specified address.
; Arguments:
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
FRAM_WRITE macro addr_h, addr_l

 ; Send the WRITE ENABLE op-code to the FRAM.
 bcf FRAM_NCS ; Start an FRAM operation (Set /CS low)
 movlw OP_WREN ; Enable write operations
 call SPIRW ; ...
 bsf FRAM_NCS ; Terminate the FRAM operation (Set /CS high)
 ; Wait a little while before starting the next command.

Li-Wen Yip School of Engineering, James Cook University 168

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 nop
 nop
 bcf FRAM_NCS ; Start an FRAM operation (Set /CS low)
 ; Send the WRITE op-code to the FRAM.
 movlw OP_WRITE ; Tell FRAM we want to write.
 call SPIRW ; ...
 ; Send the memory address to the FRAM.
 movf addr_h, W ; To this high memory location.
 call SPIRW ; ...
 movf addr_l, W ; And this low memory location.
 call SPIRW ; ...
 endm

;***
; SUBROUTINE: GET_END
;
; Description: - Get the end pointer.
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
GET_END:

 ; Put the address 0x0000 on the software stack.
 movlw 0x00
 movwf PREINC2
 movwf PREINC2

 ; Tell the FRAM we want to start reading from 0x0000
 FRAM_READ POSTDEC2, POSTDEC2

 ; Read 2 bytes from the FRAM.
 call SPIRW ; Read the low byte of the end address.
 movwf end_l ; ...
 call SPIRW ; Read the high byte of the end address.
 movwf end_h ; ...
 ; Terminate the FRAM operation (Set /CS high)
 bsf FRAM_NCS
 return

;***
; SUBROUTINE: SET_END
;
; Description: - Mark the current cursor position as the new end of the table
; Precond'ns:
; Postcond'ns:
; Regs Used:
;***
SET_END:

 ; Put the address 0x0000 on the software stack.
 movlw 0x00
 movwf PREINC2
 movwf PREINC2

 ; Tell the FRAM we want to start writing at 0x0000
 FRAM_WRITE POSTDEC2, POSTDEC2

 ; Write 2 bytes of data to the FRAM.
 movf end_l, W ; Write the low byte of the end address.
 call SPIRW ; ...
 movf end_h, W ; Write the high byte of the end address.
 call SPIRW ; ...
 ; Terminate the FRAM operation (Set /CS high)
 bsf FRAM_NCS

Li-Wen Yip School of Engineering, James Cook University 169

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 return

;***
; SUBROUTINE: ROUTE_ADD
;
; Description: - Adds a route to the routing table.
; Precond'ns: -
; Postcond'ns: -
; Regs Used:
;***
ROUTE_ADD:

 ; Get end address of the data stored in the FRAM, which is where
 ; we want to store the new record.
 call GET_END

 ; Because RAM always comes in sizes so that the full address space is used,
 ; we can check if we have gone past the end of the address space by testing
 ; a single bit. In this case, we have a 2048 byte RAM, so the highest address
 ; is 0x07FF, or 0000 0111 1111 1111. When we go one past this address, it will
 ; be 0x0800, or 0000 1000 0000 0000. Therefore, by testing bit 3 of the high
 ; byte of the address, we can check if we have reached the end of the memory space.
 btfsc end_h, 3 ; Are we at 0x800?
 return ; YES - memory is full, exit without adding route.
 ; Tell the FRAM we want to start writing at the end of the table.
 FRAM_WRITE end_h, end_l

 ; Write the record to the FRAM.
 movf source_addr, W ; Load the source address and write it.
 call SPIRW ; ...
 movf dest_addr, W ; Load the dest address and write it.
 call SPIRW ; ...
 movf next_hop, W ; Load the next hop and write it.
 call SPIRW ; ...
 movf tx_power, W ; Load the transmit power and write it.
 call SPIRW ; ...
 ; Terminate the FRAM operation (Set /CS high)
 bsf FRAM_NCS

 ; Mark the new end address of the data stored in FRAM.
 movlw 0x04 ; Add 4 to the end address.
 addwf end_l ; ...
 movlw 0x00 ; ...
 addwfc end_h ; ...
 call SET_END ; Set the end address in the FRAM chip.
 return

;***
; SUBROUTINE: ROUTE_ERASE
;
; Description: - Delete the route currently pointed to by the cursor.
; Precond'ns: -
; Postcond'ns: -
; Regs Used:
;***
ROUTE_ERASE:

 ; We will delete the record, and move the last record into the empty space.
 ; Get the address of the last record in the table, which is at (END - 4)
 call GET_END ; Get the end address stored in the FRAM.
 movlw 0x04 ; Subtract 4 from the end address.
 subwf end_l ; ...
 movlw 0x00 ; ...
 subwfb end_h ; ...
 ; Mark this as the new end of the table.
 call SET_END

Li-Wen Yip School of Engineering, James Cook University 170

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 ; Tell the FRAM we want to start reading the last record in the table.
 FRAM_READ end_h, end_l

 ; Read the record at the end of the table.
 call SPIRW ; Read the source address and save it.
 movwf source_addr ; ...
 call SPIRW ; Read the destination address and save it.
 movwf dest_addr ; ...
 call SPIRW ; Read the next hop and save it.
 movwf next_hop ; ...
 call SPIRW ; Read the transmit power and save it.
 movwf tx_power ; ...
 ; Terminate the FRAM operation (Set /CS high)
 bsf FRAM_NCS

 ; Tell the FRAM we want to start writing at the current cursor position.
 FRAM_WRITE cursor_h, cursor_l

 ; Write over the record at the current cursor position.
 movf source_addr, W ; Load the source address and write it.
 call SPIRW ; ...
 movf dest_addr, W ; Load the dest address and write it.
 call SPIRW ; ...
 movf next_hop, W ; Load the next hop and write it.
 call SPIRW ; ...
 movf tx_power, W ; Load the transmit power and write it.
 call SPIRW ; ...
 ; Terminate the FRAM operation (Set /CS high)
 bsf FRAM_NCS
 return

;***
; SUBROUTINE: ROUTE_SEARCH
;
; Description: - Search for a route in the routing table.
; Precond'ns: -
; Postcond'ns: -
; Regs Used:
;***
ROUTE_SEARCH:

 ; Make sure we have the correct end pointer for the table.
 call GET_END

 ; We will do the entire search with the one FRAM command, so we
 ; will use cursor_l and cursor_h as a local memory tracker.
 clrf cursor_h ; Reset the cursor to the first record in the table.
 movlw 0x04 ; ...
 movwf cursor_l ; ...
 ; Tell the FRAM we want to start reading the first record in the table.
 FRAM_READ cursor_h, cursor_l

_ROUTE_SEARCH_LOOP:

 ; Check if we have reached the end of the table.
 movf cursor_h, W ; Compare the high bytes of the cursor and
 cpfseq end_h ; the end pointer. Are they equal?
 bra _ROUTE_SEARCH_CHK ; NO - read the current record.
 movf cursor_l, W ; Compare the low bytes of the cursor and
 cpfseq end_l ; the end pointer. Are they equal?
 bra _ROUTE_SEARCH_CHK ; NO - read the current record.
 ; We didn't find the requested route in the table.
 bsf FRAM_NCS ; Terminate the FRAM operation (Set /CS high)
 return

Li-Wen Yip School of Engineering, James Cook University 171

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

_ROUTE_SEARCH_CHK:

 ; Check source address of the record.
 call SPIRW ; Read the source address.
 cpfseq source_addr ; Is it the source address we're looking for?
 bra _SKIP_3 ; NO - skip the next 3 bytes and try again.
 ; Check destination address of the record
 call SPIRW ; Read the destination address.
 cpfseq dest_addr ; Is it the destination address we're looking for?
 bra _SKIP_2 ; NO - skip the next 2 bytes and try again.
 ; We have found a route - read the hop count and tx power
 call SPIRW ; Read the next hop and save it.
 movwf next_hop ; ...
 call SPIRW ; Read the transmit power and save it.
 movwf tx_power ; ...
 ; Terminate the FRAM operation (Set /CS high)
 bsf FRAM_NCS
 return

_SKIP_3:
 ; Skip the next 3 memory locations and check the next record.
 call SPIRW
_SKIP_2:
 ; Skip the next 2 memory locations and check the next record.
 call SPIRW
 call SPIRW

 ; Advance the LOCAL memory tracker to the next record.
 movlw 0x04
 addwf cursor_l
 movlw 0x00
 addwfc cursor_h
 bra _ROUTE_SEARCH_LOOP

;***
; SUBROUTINE: ROUTE_ERASE_ALL
;
; Description: - Delete all routes.
; Precond'ns: -
; Postcond'ns: -
; Regs Used:
;***
ROUTE_ERASE_ALL:

 ; Set the beginning of the table as the end.
 clrf end_h ; Say that the first record is the end of the table.
 movlw 0x04 ; ...
 movwf end_l ;
 ; Write the end address of the table data.
 call SET_END
 return

 global TEST_ROUTECACHE

TEST_ROUTECACHE:
 call FRAM_INIT
 call ROUTE_ERASE_ALL
 movlw 0x11
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x22
 movwf source_addr

Li-Wen Yip School of Engineering, James Cook University 172

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x33
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x44
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x55
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x66
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x77
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x88
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 movlw 0x99
 movwf source_addr
 movwf dest_addr
 movwf next_hop
 movwf tx_power
 call ROUTE_ADD
 call ROUTE_SEARCH
 bra TEST_ROUTECACHE
 return

 end

Li-Wen Yip School of Engineering, James Cook University 173

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

Table E.14 - SWTIMERS.ASM

;***
; SOFTWARE TIMERS MODULE
;
; Version x.xx
; dd/mm/yyyy
;
; Li-Wen Yip
; Ad Hoc Radio Networking Research Project
; School Of Engineering
; James Cook University
;
;***
;
; Description:
; - This module provides one-shot timers which may be used for timeouts.
; - Each timer consists of a 8/16-bit counter, and a boolean flag indicating
; whether the timer is running.
; - To start the timer, load the desired timeout into the counter, and set the timer
flag.
; - Each time a TIMER2 interrupt occurs, the counter will be decremented if the
; timer is running. When the counter reaches zero, the flag will be cleared and the
; timer will stop.
;
; Dependencies:
;
; Resources Used:
; - TIMER2 (Exclusively)
;
; Things you must do to use this module:
;
; What you need to understand to work with this code:
;
; Notes:
;
;***
; MASTER HEADER FILE
 #include "MasterHeader.inc"

;***
; CONFIGURATION CONSTANTS
; The timebase for all software timers, as a multiple of 4us.
TIMEBASE equ d'250' ; Timebase = 250 x 4us = 1ms
;***
; CONSTANTS
;**
; IMPORTED VARIABLES
 UDATA_ACS
;**
; GLOBAL VARIABLES
TMRL4 res 1 ; Timer4 Low Register.
TMRH4 res 1 ; Timer4 High Register.
TMRF4 res 1 ; Timer4 Running.
 global TMRL4, TMRH4, TMRF4

TMRL5 res 1 ; Timer5 Low Register.
TMRH5 res 1 ; Timer5 High Register.
TMRF5 res 1 ; Timer5 Running.
 global TMRL5, TMRH5, TMRF5

;**
; LOCAL VARIABLES
;**
; IMPORTED SUBROUTINES
;**

Li-Wen Yip School of Engineering, James Cook University 174

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

; EXPORTED SUBROUTINES
 global SWTIMERS_INIT, SWTIMERS_ISR

;**
; START OF CODE
 CODE

;***
; SUBROUTINE: SOFTWARE_TIMERS_INIT
;
; Description: Initialises TIMER2 as the timebase for the software timers.
; Precond'ns: None.
; Postcond'ns: TIMER2 is configured.
; Regs Used: TIMER2 regs, WREG.
;***
SWTIMERS_INIT:
 bcf PIR1, TMR2IE ; Disable the interrupt.
 movlw TIMEBASE ; Set TMR2 period
 movwf PR2 ; ...
 movlw b'00000101' ; TIMER2 Config byte.
 ; '-0000---' ; 0:0 Postscale
 ; '-----1--' ; Timer2 ON
 ; '------01' ; 1:4 Prescale
 movwf T2CON ; ...
 bcf IPR1, TMR2IP ; Set TIMER2 to low priority interrupt.
 bcf PIR1, TMR2IF ; Clear the flag so it doesn't irp immediately.
 bsf PIE1, TMR2IE ; Enable the interrupt.
 return

;***
; MACRO: TIMER_ISR
;
; Description: Decrements the timer counter. If the timer and period
; registers are equal, the interrupt flag is set and the
; timer registers are cleared.
; Arguments: n - the timer number.
; Precond'ns:
; Postcond'ns: Counter is decremented if the timer is running.
; Regs Used: WREG
;***
TIMER_ISR macro n
 btfss TMRF#v(n), 0 ; Is The timer Running??
 bra _END_#v(n) ; NO - nothing to do.
 ; Decrement the counter.
 ; Note: after doing decf, STATUS<C> is set unless the register underflowed.
 decf TMRL#v(n) ; Decrement the counter.
 btfss STATUS, C ; Did the register underflow? (0x00 -> 0xFF)
 decf TMRH#v(n) ; YES - decrement the high byte.
 ; Test if the counter is zero.
 tstfsz TMRL#v(n) ; Is the low byte zero?
 bra _END_#v(n) ; NO - timer not expired yet.
 tstfsz TMRH#v(n) ; Is the high byte zero?
 bra _END_#v(n) ; NO - timer not expired yet.
 ; Clear the timer flag to say the timer has stopped.
 clrf TMRF#v(n)
; bra _END_#v(n)
END#v(n):

 endm

;***
; SUBROUTINE: SWTIMERS_ISR
;
; Description: Runs the ISR's for all the timers.

Li-Wen Yip School of Engineering, James Cook University 175

Appendix E: Microcontroller Software Listing Remote Ad Hoc Sensor Networks

SWTIMERS_ISR:

 ; Check if TIMER2 caused the interrupt.
 SERVICE_IRP PIR1, TMR2IF, PIE1, TMR2IE

 TIMER_ISR 4 ; Run the TIMER4 ISR.
 TIMER_ISR 5 ; Run the TIMER5 ISR.
 return

 end

Li-Wen Yip School of Engineering, James Cook University 176

	Chapter 1
	Abstract
	 Acknowledgements
	 Statement of Access
	 Source Declaration
	 Table of Contents
	 List of Figures
	
	 List Of Tables
	
	Chapter 1 INTRODUCTION
	1.1 Background
	1.2 Previous Work
	1.3 Proposed Work
	Chapter 2 RESEARCH
	2.1 Power Conservation Techniques
	2.1.1 On-Demand Wakeup
	2.1.2 Scheduled Rendezvous
	2.1.2.1 802.11b IBSS Power Saving Mode

	2.1.3 Asynchronous Wakeup
	2.1.3.1 Contiguous Wakeup Schedule
	2.1.3.2 Arbitrary Wakeup Schedule

	2.1.4 Sleep Based Routing Extensions
	2.1.4.1 SPAN
	2.1.4.2 Basic Energy Conservation Algorithm (BECA)
	2.1.4.3 Adaptive Fidelity Energy Conservation Algorithm (AFECA)

	2.1.5 Preamble Sampling
	2.1.6 Discussion
	2.1.7 Conclusions

	2.2 Dynamic Address Assignment Protocols
	2.2.1 Introduction
	2.2.1.1 Ad Hoc Network Dynamics
	2.2.1.2 Objectives
	2.2.1.3 Classification of Address assignment protocols
	2.2.1.4 Terminology

	2.2.2 Decentralised Protocols
	2.2.2.1 Routing To Uninitialised Nodes
	2.2.2.2 Limited Address Space
	2.2.2.3 Unbounded Delays
	2.2.2.4 Control Overhead

	2.2.3 Leader-based Protocols
	2.2.3.1 Dynamic Address Configuration Protocol (DACP)
	2.2.3.2 Optimised DACP (ODACP)
	2.2.3.3 Dynamic Address Allocation Protocol (DAAP)

	2.2.4 Hybrid Protocols
	2.2.4.1 Nigel Sim’s Solution
	2.2.4.2 Address Pool Protocols
	2.2.4.3 ZAL: Zero-Maintenance Address Allocation
	2.2.4.4 The Tayal and Patnaik solution

	2.2.5 Discussion
	2.2.6 Conclusions

	Chapter 1
	Chapter 3 DEVELOPMENT
	3.1 Hardware Architecture
	3.1.1 VGA Bypass Problem
	3.1.2 New Hardware Requirements
	3.1.2.1 Real Time Clock

	3.2 Software Architecture
	3.2.1 The OSI Model
	3.2.1.1 Physical Layer
	3.2.1.2 Data Link Layer
	3.2.1.2.1 Media Access Control Layer
	3.2.1.2.2 Logical Link Control Layer

	3.2.1.3 Network Layer

	3.2.2 Relocatable Code

	3.3 Manchester Encoding and Decoding
	3.3.1 Introduction
	3.3.2 Manchester Encoding
	3.3.3 Manchester Decoding and Synchronisation
	3.3.3.1 Clock Synchronisation
	3.3.3.2 Clock Detection
	3.3.3.3 Frame Synchronisation
	3.3.3.3.1 Start of Frame Sequence Detection
	3.3.3.3.2 Detecting the End of Frame

	3.3.4 Software Buffers

	3.4 Media Access Control
	3.4.1 Preamble Sampling
	3.4.1.1 Modelling and Optimisation
	3.4.1.2 Dynamic Reconfiguration
	3.4.1.2.1 Scheduled Reconfiguration
	3.4.1.2.2 Adaptive Reconfiguration

	3.4.2 Schedule Synchronisation
	3.4.2.1 Active Synchronisation
	3.4.2.2 Phase Discovery and Correction
	3.4.2.3 Synchronisation Request

	3.4.3 Media Contention and Collision Management
	3.4.3.1 Fixed Backoff Period
	3.4.3.2 Clear Channel Assessment

	3.5 Address Allocation
	3.5.1 Network Setup
	3.5.2 Node Join
	3.5.3 Local Allocation
	3.5.4 Global Address Search

	Chapter 1
	Chapter 4 IMPLEMENTATION AND TESTING
	4.1 Hardware Platform
	4.1.1 Node PCB Design and Construction
	4.1.2 ADG918 / ADG919 Wideband CMOS Switch

	4.2 Manchester Encoding and Decoding
	4.2.1 Manchester Encoding
	4.2.1.1 Development
	4.2.1.2 Maximum Encoding Speed
	4.2.1.3 Correct Byte Transmission

	4.2.2 Manchester Decoding
	4.2.2.1 Clock Synchronisation
	4.2.2.2 Maximum Decoding Speed
	4.2.2.3 Packet Reception

	4.2.3 Software Buffers

	4.3 Media Access Control
	4.3.1 Clear Channel Assessment
	4.3.2 Preamble Sampling
	4.3.3 Scheduled Reconfiguration
	4.3.4 Dynamic Reconfiguration

	4.4 Address Allocation Protocol
	4.4.1 Simulation
	4.4.2 NS-2 Simulation Environment
	4.4.3 Design
	4.4.4 Implementation

	Chapter 5 DISCUSSION OF RESULTS
	5.1.1 Hardware Architecture
	5.1.2 Manchester Encoding and Decoding
	5.1.3 MAC Protocol
	5.1.4 Address Allocation Protocol

	Chapter 6 CONCLUSION
	Chapter 7 CONTINUATIONS AND EXTENSIONS
	7.1 Software Simulation
	7.2 Location Discovery

	REFERENCES
	 SOFTWARE FLOW CHARTS
	A.1 Encoding and Decoding
	A.2 Address Allocation
	Appendix A
	Appendix B SCHEMATIC DIAGRAMS
	Appendix C RAW DATA
	Appendix D NS-2 SIMULATION SOFTWARE

	
	Appendix E MICROCONTROLLER SOFTWARE LISTING
	E.1 Header Files
	E.2 Modules
	E.3 Peripherals

	

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

